uva 1151(最小生成树,枚举子集)

时间:2023-03-08 17:39:51
uva 1151(最小生成树,枚举子集)

题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此,你可以新建一些边,费用等于两个端点的欧几里得距离的平方。另外还有q(0<=q<=8)个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相互连通,第i个套餐的花费为ci。

kruskal:

先求一次原图的最小生成树,得到n-1条边,然后每次枚举完套餐后只考虑套餐中的边和这n-1条边,则枚举套餐之后再求最小生成树。

key:

kruskal算法中,那些两端已经属于同一个连通分量的边不会再加到生成树里面。

那么买了套餐后,相当于一些边的权变为0,而对于不在套餐中的每条边e,排序在e之前的边一个也没少,反而可能多了一些权值为0的边。

所以在 原图kruskal时被扔掉的边,在购买套餐后的Kruskal中也一样会被扔掉。

#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll int
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define repd(i, a, b) for(int i = b; i >= a; i--)
#define sfi(n) scanf("%d", &n)
#define pfi(n) printf("%d\n", n)
#define sfi2(n, m) scanf("%d%d", &n, &m)
#define sfd2(n, m) scanf("%lf%lf", &n, &m)
#define pfi2(n, m) printf("%d %d\n", n, m)
#define pfi3(a, b, c) printf("%d %d %d\n", a, b, c)
const int INF = 0x3f3f3f3f; #define maxn 1010
#define maxm 1500010
ll w[maxm];
int m;
int r[maxm];
int u[maxm], v[maxm], p[maxn];
ll xx[maxn], yy[maxn];
int kb[maxn];
vector<int> f[];
int n, q, num[];
int c[];
int cmp(const int i, const int j)
{
return w[i] < w[j];
}
int Find(int x)
{
return p[x] == x ? x : p[x] = Find(p[x]);
}
ll Kruskal1()
{
ll ans = ;
int len = ;
repu(i, , m)
{
int e = r[i];
int x = Find(u[e]);
int y = Find(v[e]);
if(x != y)
{
kb[len++] = e;
ans += w[e];
p[x] = y;
}
}
return ans;
} ll Kruskal2()
{
ll ans = ;
int len = ;
int t = n - ;
repu(i, , n - )
{
int e = kb[i];
int x = Find(u[e]);
int y = Find(v[e]);
if(x != y)
{
ans += w[e];
p[x] = y;
}
}
return ans;
} int main()
{
int T;
sfi(T);
while(T--)
{
sfi2(n, q);
m = ;
repu(i, , q)
{
int a;
sfi2(num[i], c[i]);
f[i].clear();
repu(j, , num[i]) sfi(a), f[i].push_back(a);
}
repu(i, , n + ) scanf("%d%d", &xx[i], &yy[i]);
repu(i, , n + )
repu(j, + i, n + )
{
w[m] = (xx[i] - xx[j]) * (xx[i] - xx[j]) + (yy[i] - yy[j]) * (yy[i] - yy[j]);
u[m] = i;
v[m] = j;
//printf("%d %d %d %lf\n", m, i, j, w[m]);
m++; } repu(i, , n + ) p[i] = i;
repu(i, , m) r[i] = i;
sort(r, r + m, cmp);
ll minn = Kruskal1();
sort(kb, kb + n - , cmp);
//printf("%lld\n", minn);
int lim = <<q;
ll cc;
repu(i, , lim)
{
cc = ;
repu(j, , n + ) p[j] = j;
repu(j, , q) if((<<j) & i)
if(num[j])
{
cc += c[j];
int x = Find(f[j][]);
repu(k, , num[j])
{
int y = Find(f[j][k]);
if(x != y) p[y] = x;
}
//printf("%d %d\n", i, j);
}
minn = min(minn, cc + Kruskal2());
//printf("%lld\n", minn);
}
printf("%d\n", minn);
if(T) puts("");
}
return ;
}