题意:给定一个序列,让你经过不超过9的6次方次操作,变成一个有序的,操作只有在一个连续区间,交换前一半和后一半。
析:这是一个构造题,我们可以对第 i 个位置找 i 在哪,假设 i 在pos 位置,那么如果 (pos-i)*2+i-1 <= n,那么可以操作一次换过来,
如果不行再换一种,如果他们之间元素是偶数,那么交换 i - pos,如果是奇数,交换 i - pos+1,然后再经过一次就可以换到指定位置。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
} int pos[maxn], a[maxn]; void Swap(int l, int r){
int mid = (r-l+1)/2;
for(int i = 0; i < mid; ++i){
swap(pos[a[l]], pos[a[l+mid]]);
swap(a[l], a[l+mid]);
++l;
}
}
vector<P> ans; int main(){
int T; cin >> T;
while(T--){
scanf("%d", &n);
for(int i = 1; i <= n; ++i){
scanf("%d", a+i);
pos[a[i]] = i;
} ans.clear();
for(int i = 1; i <= n; ++i){
int id = pos[i];
if(i == a[i]) continue;
if((id-i)*2+i-1 <= n){
Swap(i, (id-i)*2+i-1);
ans.push_back(P(i, (id-i)*2+i-1));
}
else if((id-i) & 1){
Swap(i, id);
ans.push_back(P(i, id));
}
else if(id == n){
Swap(n-1, n);
ans.push_back(P(n-1, n));
}
else{
Swap(i, id+1);
ans.push_back(P(i, id+1));
}
--i;
}
printf("%d\n", ans.size());
for(int i = 0; i < ans.size(); ++i)
printf("%d %d\n", ans[i].first, ans[i].second);
}
return 0;
}