概述
目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。
在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。
选用Redis实现分布式锁原因
Redis有很高的性能
Redis命令对此支持较好,实现起来比较方便
在此就不介绍Redis的安装了。
使用命令介绍
SETNX
SETNX key val
当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。
expire
expire key timeout
为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。
delete
delete key
删除key
在使用Redis实现分布式锁的时候,主要就会使用到这三个命令。
实现
使用的是jedis来连接Redis。
实现思想
获取锁的时候,使用setnx加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的value值为一个随机生成的UUID,通过此在释放锁的时候进行判断。
获取锁的时候还设置一个获取的超时时间,若超过这个时间则放弃获取锁。
释放锁的时候,通过UUID判断是不是该锁,若是该锁,则执行delete进行锁释放。
分布式锁的核心代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.Transaction;
import redis.clients.jedis.exceptions.JedisException;
import java.util.List;
import java.util.UUID;
/**
* Created by liuyang on 2017/4/20.
*/
public class DistributedLock {
private final JedisPool jedisPool;
public DistributedLock(JedisPool jedisPool) {
this .jedisPool = jedisPool;
}
/**
* 加锁
* @param locaName 锁的key
* @param acquireTimeout 获取超时时间
* @param timeout 锁的超时时间
* @return 锁标识
*/
public String lockWithTimeout(String locaName,
long acquireTimeout, long timeout) {
Jedis conn = null ;
String retIdentifier = null ;
try {
// 获取连接
conn = jedisPool.getResource();
// 随机生成一个value
String identifier = UUID.randomUUID().toString();
// 锁名,即key值
String lockKey = "lock:" + locaName;
// 超时时间,上锁后超过此时间则自动释放锁
int lockExpire = ( int )(timeout / 1000 );
// 获取锁的超时时间,超过这个时间则放弃获取锁
long end = System.currentTimeMillis() + acquireTimeout;
while (System.currentTimeMillis() < end) {
if (conn.setnx(lockKey, identifier) == 1 ) {
conn.expire(lockKey, lockExpire);
// 返回value值,用于释放锁时间确认
retIdentifier = identifier;
return retIdentifier;
}
// 返回-1代表key没有设置超时时间,为key设置一个超时时间
if (conn.ttl(lockKey) == - 1 ) {
conn.expire(lockKey, lockExpire);
}
try {
Thread.sleep( 10 );
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
} catch (JedisException e) {
e.printStackTrace();
} finally {
if (conn != null ) {
conn.close();
}
}
return retIdentifier;
}
/**
* 释放锁
* @param lockName 锁的key
* @param identifier 释放锁的标识
* @return
*/
public boolean releaseLock(String lockName, String identifier) {
Jedis conn = null ;
String lockKey = "lock:" + lockName;
boolean retFlag = false ;
try {
conn = jedisPool.getResource();
while ( true ) {
// 监视lock,准备开始事务
conn.watch(lockKey);
// 通过前面返回的value值判断是不是该锁,若是该锁,则删除,释放锁
if (identifier.equals(conn.get(lockKey))) {
Transaction transaction = conn.multi();
transaction.del(lockKey);
List<Object> results = transaction.exec();
if (results == null ) {
continue ;
}
retFlag = true ;
}
conn.unwatch();
break ;
}
} catch (JedisException e) {
e.printStackTrace();
} finally {
if (conn != null ) {
conn.close();
}
}
return retFlag;
}
}
|
测试
下面就用一个简单的例子测试刚才实现的分布式锁。
例子中使用50个线程模拟秒杀一个商品,使用--运算符来实现商品减少,从结果有序性就可以看出是否为加锁状态。
模拟秒杀服务,在其中配置了jedis线程池,在初始化的时候传给分布式锁,供其使用。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;
/**
* Created by liuyang on 2017/4/20.
*/
public class Service {
private static JedisPool pool = null ;
static {
JedisPoolConfig config = new JedisPoolConfig();
// 设置最大连接数
config.setMaxTotal( 200 );
// 设置最大空闲数
config.setMaxIdle( 8 );
// 设置最大等待时间
config.setMaxWaitMillis( 1000 * 100 );
// 在borrow一个jedis实例时,是否需要验证,若为true,则所有jedis实例均是可用的
config.setTestOnBorrow( true );
pool = new JedisPool(config, "127.0.0.1" , 6379 , 3000 );
}
DistributedLock lock = new DistributedLock(pool);
int n = 500 ;
public void seckill() {
// 返回锁的value值,供释放锁时候进行判断
String indentifier = lock.lockWithTimeout( "resource" , 5000 , 1000 );
System.out.println(Thread.currentThread().getName() + "获得了锁" );
System.out.println(--n);
lock.releaseLock( "resource" , indentifier);
}
}
// 模拟线程进行秒杀服务
public class ThreadA extends Thread {
private Service service;
public ThreadA(Service service) {
this .service = service;
}
@Override
public void run() {
service.seckill();
}
}
public class Test {
public static void main(String[] args) {
Service service = new Service();
for ( int i = 0 ; i < 50 ; i++) {
ThreadA threadA = new ThreadA(service);
threadA.start();
}
}
}
|
结果如下,结果为有序的。
若注释掉使用锁的部分
1
2
3
4
5
6
7
|
public void seckill() {
// 返回锁的value值,供释放锁时候进行判断
//String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
System.out.println(Thread.currentThread().getName() + "获得了锁" );
System.out.println(--n);
//lock.releaseLock("resource", indentifier);
}
|
从结果可以看出,有一些是异步进行的。
在分布式环境中,对资源进行上锁有时候是很重要的,比如抢购某一资源,这时候使用分布式锁就可以很好地控制资源。
当然,在具体使用中,还需要考虑很多因素,比如超时时间的选取,获取锁时间的选取对并发量都有很大的影响,上述实现的分布式锁也只是一种简单的实现,主要是一种思想。
下一次我会使用zookeeper实现分布式锁,使用zookeeper的可靠性是要大于使用redis实现的分布式锁的,但是相比而言,redis的性能更好。
上面的代码可以在我的GitHub中进行查看。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。