Bitmap是内存消耗大户,绝大多数的OOM崩溃都是在操作Bitmap时产生的,下面来看看如何几个处理图片的方法:
图片显示:
我们需要根据需求去加载图片的大小。
例如在列表中仅用于预览时加载缩略图(thumbnails )。
只有当用户点击具体条目想看详细信息的时候,这时另启动一个fragment/activity/对话框等等,去显示整个图片
图片大小:
直接使用ImageView显示bitmap会占用较多资源,特别是图片较大的时候,可能导致崩溃。
使用BitmapFactory.Options设置inSampleSize, 这样做可以减少对系统资源的要求。
属性值inSampleSize表示缩略图大小为原始图片大小的几分之一,即如果这个值为2,则取出的缩略图的宽和高都是原始图片的1/2,图片大小就为原始大小的1/4。
- BitmapFactory.Options bitmapFactoryOptions = new BitmapFactory.Options();
- bitmapFactoryOptions.inJustDecodeBounds = true;
- bitmapFactoryOptions.inSampleSize = 2;
- // 这里一定要将其设置回false,因为之前我们将其设置成了true
- // 设置inJustDecodeBounds为true后,decodeFile并不分配空间,即,BitmapFactory解码出来的Bitmap为Null,但可计算出原始图片的长度和宽度
- options.inJustDecodeBounds = false;
- Bitmap bmp = BitmapFactory.decodeFile(sourceBitmap, options);
图片像素:
ALPHA_8:每个像素占用1byte内存
ARGB_4444:每个像素占用2byte内存
ARGB_8888:每个像素占用4byte内存 (默认)
RGB_565:每个像素占用2byte内存
图片回收:
使用Bitmap过后,就需要及时的调用Bitmap.recycle()方法来释放Bitmap占用的内存空间,而不要等Android系统来进行释放。
下面是释放Bitmap的示例代码片段。
- // 先判断是否已经回收
- if(bitmap != null && !bitmap.isRecycled()){
- // 回收并且置为null
- bitmap.recycle();
- bitmap = null;
- }
- System.gc();
捕获异常:
经过上面这些优化后还会存在报OOM的风险,所以下面需要一道最后的关卡——捕获OOM异常:
- Bitmap bitmap = null;
- try {
- // 实例化Bitmap
- bitmap = BitmapFactory.decodeFile(path);
- } catch (OutOfMemoryError e) {
- // 捕获OutOfMemoryError,避免直接崩溃
- }
- if (bitmap == null) {
- // 如果实例化失败 返回默认的Bitmap对象
- return defaultBitmapMap;
- }
其他小tips:
对常量使用static final修饰符
让我们来看看这两段在类前面的声明:
static int intVal = 42;
static String strVal = "Hello, world!";
编译器会生成一个叫做clinit的初始化类的方法,当类第一次被使用的时候这个方法会被执行。方法会将42赋给intVal,然后把一个指向类中常量表 的引用赋给strVal。当以后要用到这些值的时候,会在成员变量表中查找到他们。 下面我们做些改进,使用“final”关键字:
static final int intVal = 42;
static final String strVal = "Hello, world!";
现在,类不再需要clinit方法,因为在成员变量初始化的时候,会将常量直接保存到类文件中。用到intVal的代码被直接替换成42,而使用strVal的会指向一个字符串常量,而不是使用成员变量。
将一个方法或类声明为final不会带来性能的提升,但是会帮助编译器优化代码。举例说,如果编译器知道一个getter方法不会被重载,那么编译器会对其采用内联调用。
你也可以将本地变量声明为final,同样,这也不会带来性能的提升。使用“final”只能使本地变量看起来更清晰些(但是也有些时候这是必须的,比如在使用匿名内部类的时候)。
静态方法代替虚拟方法
如果不需要访问某对象的字段,将方法设置为静态,调用会加速15%到20%。这也是一种好的做法,因为你可以从方法声明中看出调用该方法不需要更新此对象的状态。
减少不必要的全局变量
尽量避免static成员变量引用资源耗费过多的实例,比如Context
避免创建不必要的对象
最常见的例子就是当你要频繁操作一个字符串时,使用StringBuffer代替String。
对于所有所有基本类型的组合:int数组比Integer数组好,这也概括了一个基本事实,两个平行的int数组比 (int,int)对象数组性能要好很多。
总体来说,就是避免创建短命的临时对象。减少对象的创建就能减少垃圾收集,进而减少对用户体验的影响。
避免使用浮点数
通常的经验是,在Android设备中,浮点数会比整型慢两倍。
使用实体类比接口好
假设你有一个HashMap对象,你可以将它声明为HashMap或者Map:
Map map1 = new HashMap(); HashMap map2 = new HashMap();
哪个更好呢?
按照传统的观点Map会更好些,因为这样你可以改变他的具体实现类,只要这个类继承自Map接口。传统的观点对于传统的程序是正确的,但是它并不适合嵌入式系统。调用一个接口的引用会比调用实体类的引用多花费一倍的时间。如果HashMap完全适合你的程序,那么使用Map就没有什么价值。如果有些地方你不能确定,先避免使用Map,剩下的交给IDE提供的重构功能好了。(当然公共API是一个例外:一个好的API常常会牺牲一些性能)
避免使用枚举
枚举变量非常方便,但不幸的是它会牺牲执行的速度和并大幅增加文件体积。
使用枚举变量可以让你的API更出色,并能提供编译时的检查。所以在通常的时候你毫无疑问应该为公共API选择枚举变量。但是当性能方面有所限制的时候,你就应该避免这种做法了。
for循环
访问成员变量比访问本地变量慢得多,如下面一段代码:
- for(int i =0; i < this.mCount; i++) {}
永远不要在for的第二个条件中调用任何方法,如下面一段代码:
- for(int i =0; i < this.getCount(); i++) {}
对上面两个例子最好改为:
- int count = this.mCount; / int count = this.getCount();
- for(int i =0; i < count; i++) {}
- for (Foo a : mArray) {
- sum += a.mSplat;
- }