话说挺早就写过斯坦纳树了,不过当时没怎么总结,也不是很理解……现在来个小结吧~
斯坦纳树就是包含给定点的最小生成树(个人理解权值应当为正)。
一般来讲,给定点的数目应该很小吧。。。于是我们可以用状压DP来解决。
需要2个方程:
f[st][i]表示连通性至少为st,且经过i点的最小距离
方程1.f[st][i] = Min{f[s][i] + f[st - s][i]}(s为st的子集)
方程2.f[st][i] = Min{f[st][j] + w(i,j)}(i,j之间有边相连)
这里大家可能会有疑问,为什么是两个方程?
因为单凭第一个方程转移是不够准确的,会出现重点的问题。不过也一定包含合法的转移,所以我们要通过第二个方程来转移。如果我没有理解错,这也就是为什么这种方法不能应用于有负权的图上。
第一个直接枚举子集,完了以后用SPFA转移下一个(当然也可以用floyed)。
void SPFA(int sta)
{
while (!q.empty()) {
int i,j;
unpack(q.front(),i,j);
inq[q.front()] = 0;q.pop();
for (int k = 0; k < 4; ++k) {
int x = d[k][0] + i,y = d[k][1] + j,tmp;
if (x == -1 || y == -1 || x == n || y == m) continue;
if (update(x,y,sta,i,j,sta,f[i][j][sta] + a[x][y]) && !inq[tmp = pack(x,y)])
q.push(tmp),inq[tmp] = 1;
}
}
}
要记住f[st][i]表示连通性至少为st,是至少。
for (int sta = 1,tmp; sta < Max_s; ++sta) {
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j) {
for (int s = sta&(sta - 1); s; s = (s - 1)&sta)
update(i,j,sta,i,j,s,f[i][j][s] + f[i][j][sta - s] - a[i][j]);
if (f[i][j][sta] != INF) q.push(tmp = pack(i,j)),inq[tmp] = 1;
}
SPFA(sta);
}
这样转移就可以了。
/**************************************************************
Problem: 2595
User: lazycal
Language: C++
Result: Accepted
Time:144 ms
Memory:1640 kb
****************************************************************/
#include <cstdio>
#include <cstring>
#include <queue>
using std::queue;
queue<int>q;
const int N = 10,INF = 0xf0f0f0f;
const int d[4][2] = {{1,0},{-1,0},{0,1},{0,-1}};
int f[N][N][1<<N],n,m,a[N][N],st[N][N],K,pre[N][N][1<<N];
bool vis[N][N],inq[N*N];
int pack(const int x,const int y){return x*10 + y;}
int pack2(const int x,const int y,const int s){return x*100000 + y*10000 + s;}
void unpack(const int x,int &i,int &j){i = x/10; j = x%10;}
void unpack2(const int x,int &i,int &j,int &s){s = x%10000; j = (x/10000)%10; i = x/100000;}
bool update(const int x,const int y,const int news,const int i,const int j,const int sta,const int w)
{
if (f[x][y][news] > w) return f[x][y][news] = w,pre[x][y][news] = pack2(i,j,sta),true;
return false;
}
void SPFA(int sta)
{
while (!q.empty()) {
int i,j;
unpack(q.front(),i,j);
inq[q.front()] = 0;q.pop();
for (int k = 0; k < 4; ++k) {
int x = d[k][0] + i,y = d[k][1] + j,tmp;
if (x == -1 || y == -1 || x == n || y == m) continue;
if (update(x,y,sta/*|st[x][y]*/,i,j,sta,f[i][j][sta] + a[x][y]) /*&& (sta|st[x][y]) == sta*/ && !inq[tmp = pack(x,y)])
q.push(tmp),inq[tmp] = 1;
}
}
}
void dfs(const int i,const int j,const int s)
{
if (!pre[i][j][s]) return;
int x,y,ns;
vis[i][j] = 1;
unpack2(pre[i][j][s],x,y,ns);
dfs(x,y,ns);
if (x == i && y == j) dfs(x,y,s - ns);
}
void output()
{
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j)
if (!a[i][j]) printf("x");
else if (vis[i][j]) printf("o");
else printf("_");
puts("");
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("2595.in","r",stdin);
freopen("2595.out","w",stdout);
#endif
scanf("%d%d",&n,&m);
memset(f,0xf,sizeof f);
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j) {
scanf("%d",&a[i][j]);
if (!a[i][j]) st[i][j] = 1<<(K++),f[i][j][st[i][j]] = 0;
}
int Max_s = (1 << K);
for (int sta = 1,tmp; sta < Max_s; ++sta) {
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j) {
//if (a[i][j] && !(st[i][j]&sta)) continue;
for (int s = sta&(sta - 1); s; s = (s - 1)&sta)
update(i,j,sta,i,j,s,f[i][j][s] + f[i][j][sta - s] - a[i][j]);
if (f[i][j][sta] != INF) q.push(tmp = pack(i,j)),inq[tmp] = 1;//test!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
}
SPFA(sta);
// printf("\n%d\n",sta);
// for (int i = 0; i < n; ++i) {
// for (int j = 0; j < m; ++j) printf("%d ",f[i][j][sta]);
// puts("");
// }
}
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
if (!a[i][j]) {
printf("%d\n",f[i][j][Max_s - 1]);
dfs(i,j,Max_s - 1);
output();
return 0;
}
}