5.3 set
set、multiset、map、maltimap都是以RB-tree为基础。为了效率,尽量使用成员函数find等,而不是STL算法。
不能通过set的迭代器改变set的元素值,以防破坏排序规则。
// 如果编译器不能根据前面模板参数推导出后面使用的默认参数类型,
// 那么就需要手工指定, 本实作set内部元素默认使用less进行比较
// 内部维护的数据结构是红黑树, 具有非常优秀的最坏情况的时间复杂度
// 注意: set内不允许重复元素的存在, 如果插入重复元素,
// 则会忽略插入操作
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Key, class Compare = less<Key>, class Alloc = alloc>
#else
template <class Key, class Compare, class Alloc = alloc>
#endif
class set
{
public:
// 在set中key就是value, value同时也是key
typedef Key key_type;
typedef Key value_type;
// 用于比较的函数
typedef Compare key_compare;
typedef Compare value_compare;
private:
// 内部采用红黑树为数据结构, 其实现在<stl_tree.h>
typedef rb_tree<key_type, value_type,
identity<value_type>, key_compare, Alloc> rep_type;
rep_type t;
public:
// 标记为'STL标准强制要求'的typedefs用于提供iterator_traits<I>支持
// 注意: 迭代器, 引用类型都设计为const, 这是由set的性质决定的,
// 如果用户自行更改其数值, 可能会导致内部的红黑树出现问题
typedef typename rep_type::const_pointer pointer; // STL标准强制要求
typedef typename rep_type::const_pointer const_pointer;
typedef typename rep_type::const_reference reference; // STL标准强制要求
typedef typename rep_type::const_reference const_reference;
typedef typename rep_type::const_iterator iterator; // STL标准强制要求
typedef typename rep_type::const_iterator const_iterator;
typedef typename rep_type::const_reverse_iterator reverse_iterator;
typedef typename rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename rep_type::size_type size_type;
typedef typename rep_type::difference_type difference_type; // STL标准强制要求
set() : t(Compare()) {}
explicit set(const Compare& comp) : t(comp) {}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
set(InputIterator first, InputIterator last)
: t(Compare()) { t.insert_unique(first, last); }
template <class InputIterator>
set(InputIterator first, InputIterator last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); }
#else
set(const value_type* first, const value_type* last)
: t(Compare()) { t.insert_unique(first, last); }
set(const value_type* first, const value_type* last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); }
set(const_iterator first, const_iterator last)
: t(Compare()) { t.insert_unique(first, last); }
set(const_iterator first, const_iterator last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); }
#endif /* __STL_MEMBER_TEMPLATES */
set(const set<Key, Compare, Alloc>& x) : t(x.t) {}
set<Key, Compare, Alloc>& operator=(const set<Key, Compare, Alloc>& x)
{
t = x.t;
return *this;
}
// 返回用于key比较的函数
key_compare key_comp() const { return t.key_comp(); }
// 由于set的性质, value比较和key使用同一个比较函数
value_compare value_comp() const { return t.key_comp(); }
iterator begin() const { return t.begin(); }
iterator end() const { return t.end(); }
reverse_iterator rbegin() const { return t.rbegin(); }
reverse_iterator rend() const { return t.rend(); }
bool empty() const { return t.empty(); }
size_type size() const { return t.size(); }
size_type max_size() const { return t.max_size(); }
// 这里调用的是专用的swap, 不是全局的swap, 定于于<stl_tree.h>
void swap(set<Key, Compare, Alloc>& x) { t.swap(x.t); }
typedef pair<iterator, bool> pair_iterator_bool;
// 返回的pair.second用于告知用户insert操作是否执行
// 为true则表示真正进行插入, 为false则表示set中已存在待插入元素,
// 不会重复插入
pair<iterator,bool> insert(const value_type& x)
{
pair<typename rep_type::iterator, bool> p = t.insert_unique(x);
return pair<iterator, bool>(p.first, p.second);
}
// 在position处插入元素, 但是position仅仅是个提示, 如果给出的位置不能进行插入,
// STL会进行查找, 这会导致很差的效率
iterator insert(iterator position, const value_type& x)
{
typedef typename rep_type::iterator rep_iterator;
return t.insert_unique((rep_iterator&)position, x);
}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{
t.insert_unique(first, last);
}
#else
void insert(const_iterator first, const_iterator last) {
t.insert_unique(first, last);
}
void insert(const value_type* first, const value_type* last) {
t.insert_unique(first, last);
}
#endif /* __STL_MEMBER_TEMPLATES */
// 擦除指定位置的元素, 会导致内部的红黑树重新排列
void erase(iterator position)
{
typedef typename rep_type::iterator rep_iterator;
t.erase((rep_iterator&)position);
}
// 会返回擦除元素的个数, 其实就是标识set内原来是否有指定的元素
size_type erase(const key_type& x)
{
return t.erase(x);
}
// 擦除指定区间的元素, 会导致红黑树有较大变化
void erase(iterator first, iterator last)
{
typedef typename rep_type::iterator rep_iterator;
t.erase((rep_iterator&)first, (rep_iterator&)last);
}
// 好吧, clear all, 再见吧红黑树
void clear() { t.clear(); }
// 查找指定的元素
iterator find(const key_type& x) const { return t.find(x); }
// 返回指定元素的个数, 其实就是测试元素是否在set中
size_type count(const key_type& x) const { return t.count(x); }
// 返回小于当前元素的第一个可插入的位置
iterator lower_bound(const key_type& x) const
{
return t.lower_bound(x);
}
// 返回大于当前元素的第一个可插入的位置
iterator upper_bound(const key_type& x) const
{
return t.upper_bound(x);
}
pair<iterator,iterator> equal_range(const key_type& x) const
{
return t.equal_range(x);
}
friend bool operator== __STL_NULL_TMPL_ARGS (const set&, const set&);
friend bool operator< __STL_NULL_TMPL_ARGS (const set&, const set&);
};
// 比较两个set比较的是其内部的红黑树, 会触发红黑树的operator
template <class Key, class Compare, class Alloc>
inline bool operator==(const set<Key, Compare, Alloc>& x,
const set<Key, Compare, Alloc>& y) {
return x.t == y.t;
}
template <class Key, class Compare, class Alloc>
inline bool operator<(const set<Key, Compare, Alloc>& x,
const set<Key, Compare, Alloc>& y) {
return x.t < y.t;
}
// 如果编译器支持模板函数特化优先级
// 那么将全局的swap实现为使用set私有的swap以提高效率
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class Key, class Compare, class Alloc>
inline void swap(set<Key, Compare, Alloc>& x,
set<Key, Compare, Alloc>& y)
{
x.swap(y);
}
5.4 map
map的所有元素都是pair,同时拥有实值和键值。同样也不可以通过迭代器修改键值,但是可以修改value值。
template <class T1, class T2>
struct pair {
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;
pair() : first(T1()), second(T2()) {}
pair(const T1& a, const T2& b) : first(a), second(b) {}
#ifdef __STL_MEMBER_TEMPLATES
template <class U1, class U2>
pair(const pair<U1, U2>& p) : first(p.first), second(p.second) {}
#endif
};
#ifndef __STL_LIMITED_DEFAULT_TEMPLATEStemplate <class Key, class T, class Compare = less<Key>, class Alloc = alloc>#elsetemplate <class Key, class T, class Compare, class Alloc = alloc>#endifclass map {public:// typedefs: typedef Key key_type; typedef T data_type; typedef T mapped_type; typedef pair<const Key, T> value_type; typedef Compare key_compare; class value_compare //定义一个functor,用于元素比较 : public binary_function<value_type, value_type, bool> { friend class map<Key, T, Compare, Alloc>; protected : Compare comp; value_compare(Compare c) : comp(c) {} public: bool operator()(const value_type& x, const value_type& y) const { return comp(x.first, y.first); } };private: typedef rb_tree<key_type, value_type, select1st<value_type>, key_compare, Alloc> rep_type; rep_type t; // red-black tree representing mappublic: typedef typename rep_type::pointer pointer; typedef typename rep_type::const_pointer const_pointer; typedef typename rep_type::reference reference; typedef typename rep_type::const_reference const_reference; typedef typename rep_type::iterator iterator; //可以通过迭代器改变value值 typedef typename rep_type::const_iterator const_iterator; typedef typename rep_type::reverse_iterator reverse_iterator; typedef typename rep_type::const_reverse_iterator const_reverse_iterator; typedef typename rep_type::size_type size_type; typedef typename rep_type::difference_type difference_type;
pair<iterator,bool> insert(const value_type& x) { return t.insert_unique(x); }iterator insert(iterator position, const value_type& x) { return t.insert_unique(position, x);}T& operator[](const key_type& k) { return (*((insert(value_type(k, T()))).first)).second; //此处insert()的返回值为pair,最后的实值以by reference传递。
举例:
map<string, int> simap;
simap[string("abc")] = 1; //左值运用
int member = simap[string("abc")]; //右值运用
5.5 multiset
调用RB-tree的insert_equal()而不是insert_unique()。
5.6 multimap
调用RB-tree的insert_equal()而不是insert_unique()。