Spark-on-YARN
1. 官方文档
http://spark.apache.org/docs/latest/running-on-yarn.html
2. 配置安装
1.安装hadoop:需要安装HDFS模块和YARN模块,HDFS必须安装,spark运行时要把jar包存放到HDFS上。
2.安装Spark:解压Spark安装程序到一台服务器上,修改spark-env.sh配置文件,spark程序将作为YARN的客户端用于提交任务
export JAVA_HOME=/usr/local/jdk1.7.0_80
export HADOOP_CONF_DIR=/usr/local/hadoop-2.6.4/etc/hadoop
3.启动HDFS和YARN
3. 运行模式(cluster模式和client模式)
1.cluster模式
./bin/spark-submit--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
--queue default \
lib/spark-examples*.jar\
10
---------------------------------------------------------------------------------------------------------------------------------
./bin/spark-submit--class cn.toto.spark.day1.WordCount \
--master yarn \
--deploy-mode cluster \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
--queue default \
/home/bigdata/hello-spark-1.0.jar\
hdfs://mycluster/wchdfs://mycluster/out-yarn-1
注意:hdfs的上面的端口默认是9000
2.client模式
./bin/spark-submit--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
--queue default \
lib/spark-examples*.jar\
10
spark-shell必须使用client模式
./bin/spark-shell--master yarn --deploy-mode client
3.两种模式的区别
cluster模式:Driver程序在YARN中运行,应用的运行结果不能在客户端显示,所以最好运行那些将结果最终保存在外部存储介质(如HDFS、Redis、Mysql)而非stdout输出的应用程序,客户端的终端显示的仅是作为YARN的job的简单运行状况。
client模式:Driver运行在Client上,应用程序运行结果会在客户端显示,所有适合运行结果有输出的应用程序(如spark-shell)
4.原理
cluster模式:
Spark Driver首先作为一个ApplicationMaster在YARN集群中启动,客户端提交给ResourceManager的每一个job都会在集群的NodeManager节点上分配一个唯一的ApplicationMaster,由该ApplicationMaster管理全生命周期的应用。具体过程:
1. 由client向ResourceManager提交请求,并上传jar到HDFS上
这期间包括四个步骤:
a).连接到RM
b).从RM的ASM(ApplicationsManager)中获得metric、queue和resource等信息。
c). upload app jar and spark-assembly jar
d).设置运行环境和container上下文(launch-container.sh等脚本)
2. ResouceManager向NodeManager申请资源,创建SparkApplicationMaster(每个SparkContext都有一个ApplicationMaster)
3. NodeManager启动ApplicationMaster,并向ResourceManagerAsM注册
4. ApplicationMaster从HDFS中找到jar文件,启动SparkContext、DAGscheduler和YARN ClusterScheduler
5. ResourceManager向ResourceManagerAsM注册申请container资源
6. ResourceManager通知NodeManager分配Container,这时可以收到来自ASM关于container的报告。(每个container对应一个executor)
7. Spark ApplicationMaster直接和container(executor)进行交互,完成这个分布式任务。
client模式:
在client模式下,Driver运行在Client上,通过ApplicationMaster向RM获取资源。本地Driver负责与所有的executor container进行交互,并将最后的结果汇总。结束掉终端,相当于kill掉这个spark应用。一般来说,如果运行的结果仅仅返回到terminal上时需要配置这个。
客户端的Driver将应用提交给Yarn后,Yarn会先后启动ApplicationMaster和executor,另外ApplicationMaster和executor都是装载在container里运行,container默认的内存是1G,ApplicationMaster分配的内存是driver- memory,executor分配的内存是executor-memory。同时,因为Driver在客户端,所以程序的运行结果可以在客户端显示,Driver以进程名为SparkSubmit的形式存在。