![caffe 代码阅读笔记1 caffe 代码阅读笔记1](https://image.shishitao.com:8440/aHR0cHM6Ly9ia3FzaW1nLmlrYWZhbi5jb20vdXBsb2FkL2NoYXRncHQtcy5wbmc%2FIQ%3D%3D.png?!?w=700&webp=1)
首先查看caffe.cpp里的train函数:
// Train / Finetune a model.
//训练,微调一个网络模型
int train() {
// google的glog库,检查--solver、--snapshot和--weight并输出消息;必须有指定solver,snapshot和weight两者指定其一;
CHECK_GT(FLAGS_solver.size(), ) << "Need a solver definition to train.";
CHECK(!FLAGS_snapshot.size() || !FLAGS_weights.size())
<< "Give a snapshot to resume training or weights to finetune "
"but not both."; caffe::SolverParameter solver_param; //实例化SolverParameter类,该类保存solver参数和相应的方法
caffe::ReadSolverParamsFromTextFileOrDie(FLAGS_solver, &solver_param); //将-solver指定solver.prototxt文件内容解析到solver_param中 // If the gpus flag is not provided, allow the mode and device to be set
// in the solver prototxt.
// 根据命令参数-gpu或者solver.prototxt提供的信息设置GPU
if (FLAGS_gpu.size() ==
&& solver_param.solver_mode() == caffe::SolverParameter_SolverMode_GPU) {
if (solver_param.has_device_id()) {
FLAGS_gpu = "" +
boost::lexical_cast<string>(solver_param.device_id());
} else { // Set default GPU if unspecified
FLAGS_gpu = "" + boost::lexical_cast<string>(); // boost::lexical_cast(0)是将数值0转换为字符串'“0”;
}
} // 多GPU下,将GPU编号存入vector容器中(get_gpus()函数通过FLAGS_gpu获取);
vector<int> gpus;
get_gpus(&gpus);
if (gpus.size() == ) {
LOG(INFO) << "Use CPU.";
Caffe::set_mode(Caffe::CPU);
} else {
ostringstream s;
for (int i = ; i < gpus.size(); ++i) {
s << (i ? ", " : "") << gpus[i];
}
LOG(INFO) << "Using GPUs " << s.str();
#ifndef CPU_ONLY
cudaDeviceProp device_prop;
for (int i = ; i < gpus.size(); ++i) {
cudaGetDeviceProperties(&device_prop, gpus[i]);
LOG(INFO) << "GPU " << gpus[i] << ": " << device_prop.name;
}
#endif
solver_param.set_device_id(gpus[]);
Caffe::SetDevice(gpus[]);
Caffe::set_mode(Caffe::GPU);
Caffe::set_solver_count(gpus.size());
} // 处理snapshot, stop or none信号,其声明在include/caffe/util/signal_Handler.h中;
// GetRequestedAction在caffe.cpp中,将‘stop’,‘snapshot’,‘none’转换为标准信号,即解析;
caffe::SignalHandler signal_handler(
GetRequestedAction(FLAGS_sigint_effect),
GetRequestedAction(FLAGS_sighup_effect)); //指向caffe::Solver对象,该对象由CreateSolver创建
shared_ptr<caffe::Solver<float> >
solver(caffe::SolverRegistry<float>::CreateSolver(solver_param)); //solver设置操作函数
solver->SetActionFunction(signal_handler.GetActionFunction()); // 从snapshot或caffemodel中恢复train;
if (FLAGS_snapshot.size()) {
LOG(INFO) << "Resuming from " << FLAGS_snapshot;
solver->Restore(FLAGS_snapshot.c_str());
} else if (FLAGS_weights.size()) {
CopyLayers(solver.get(), FLAGS_weights);
} if (gpus.size() > ) {
caffe::P2PSync<float> sync(solver, NULL, solver->param());
sync.Run(gpus);
} else {
LOG(INFO) << "Starting Optimization";
solver->Solve(); // // 初始化完成,开始优化网络
}
LOG(INFO) << "Optimization Done.";
return ;
}
RegisterBrewFunction(train);
// Test: score a model.
//测试网络模型
int test() {
CHECK_GT(FLAGS_model.size(), ) << "Need a model definition to score.";
CHECK_GT(FLAGS_weights.size(), ) << "Need model weights to score."; // Set device id and mode
vector<int> gpus;
get_gpus(&gpus);
if (gpus.size() != ) {
LOG(INFO) << "Use GPU with device ID " << gpus[];
#ifndef CPU_ONLY
cudaDeviceProp device_prop;
cudaGetDeviceProperties(&device_prop, gpus[]);
LOG(INFO) << "GPU device name: " << device_prop.name;
#endif
Caffe::SetDevice(gpus[]);
Caffe::set_mode(Caffe::GPU);
} else {
LOG(INFO) << "Use CPU.";
Caffe::set_mode(Caffe::CPU);
}
// Instantiate the caffe net.
//实例化caffe网络
Net<float> caffe_net(FLAGS_model, caffe::TEST);
caffe_net.CopyTrainedLayersFrom(FLAGS_weights);
LOG(INFO) << "Running for " << FLAGS_iterations << " iterations."; vector<int> test_score_output_id;
vector<float> test_score;
float loss = ;
for (int i = ; i < FLAGS_iterations; ++i) {
float iter_loss;
const vector<Blob<float>*>& result =
caffe_net.Forward(&iter_loss);
loss += iter_loss;
int idx = ;
for (int j = ; j < result.size(); ++j) {
const float* result_vec = result[j]->cpu_data();
for (int k = ; k < result[j]->count(); ++k, ++idx) {
const float score = result_vec[k];
if (i == ) {
test_score.push_back(score);
test_score_output_id.push_back(j);
} else {
test_score[idx] += score;
}
const std::string& output_name = caffe_net.blob_names()[
caffe_net.output_blob_indices()[j]];
LOG(INFO) << "Batch " << i << ", " << output_name << " = " << score;
}
}
}
loss /= FLAGS_iterations;
LOG(INFO) << "Loss: " << loss;
for (int i = ; i < test_score.size(); ++i) {
const std::string& output_name = caffe_net.blob_names()[
caffe_net.output_blob_indices()[test_score_output_id[i]]];
const float loss_weight = caffe_net.blob_loss_weights()[
caffe_net.output_blob_indices()[test_score_output_id[i]]];
std::ostringstream loss_msg_stream;
const float mean_score = test_score[i] / FLAGS_iterations;
if (loss_weight) {
loss_msg_stream << " (* " << loss_weight
<< " = " << loss_weight * mean_score << " loss)";
}
LOG(INFO) << output_name << " = " << mean_score << loss_msg_stream.str();
} return ;
}
RegisterBrewFunction(test);