http://poj.org/problem?id=3714 (题目链接)
现在才搞平面最近点对。。感觉有点尴尬
题意
给出平面上两组点,每组n个,求两组点之间最短距离
Solution1
平面最近点对,分治即可。
将点按横坐标排序,然后每次二分成左边和右边分别计算最小距离,再计算中间的最小距离,这里需要把中间符合条件的点按照纵坐标排序,然后当当前枚举的两点的纵坐标之差大于答案时break,否则会TLE。
代码1
// poj3714
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<vector>
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
inline LL getint() {
LL x=0,f=1;char ch=getchar();
while (ch>'9' || ch<'0') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int maxn=1000010;
struct point {double x,y;int flag;}p[maxn];
int n,tmp[maxn]; bool cmpx(point a,point b) {
return a.x==b.x ? a.y<b.y : a.x<b.x;
}
bool cmpy(int a,int b) {
return p[a].y==p[b].y ? p[a].x<p[b].x : p[a].y<p[b].y;
}
double dis(point a,point b) {
return sqrt((double)(a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double solve(int l,int r) {
double res=1e60;
if (l==r) return res;
if (l+1==r) {
if (p[l].flag==p[r].flag) return res;
return dis(p[l],p[r]);
}
int mid=(l+r)>>1;
res=solve(l,mid);
res=min(res,solve(mid+1,r));
int num=0;
for (int i=l;i<=r;i++)
if (fabs(p[i].x-p[mid].x)<=res) tmp[++num]=i;
sort(tmp+1,tmp+num+1,cmpy);
for (int i=1;i<=num;i++)
for (int j=i+1;j<=num;j++) {
if (fabs(p[tmp[i]].y-p[tmp[j]].y)>=res) break; //剪枝
if (p[tmp[i]].flag!=p[tmp[j]].flag) res=min(res,dis(p[tmp[i]],p[tmp[j]]));
}
return res;
}
int main() {
int T;
scanf("%d",&T);
while (T--) {
scanf("%d",&n);
for (int i=1;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y),p[i].flag=0;
for (int i=1;i<=n;i++) scanf("%lf%lf",&p[i+n].x,&p[i+n].y),p[i+n].flag=1;
n<<=1;
sort(p+1,p+1+n,cmpx);
printf("%.3f\n",solve(1,n));
}
return 0;
}
Solution2
hzwer上惊现平面最近点对的随机化算法(貌似是随机分块),于是我就蒯了过来,虽然并不知道为什么可以这样写,但是好像很厉害的样子。
上网搜了下,发现期望复杂度是O(n)的。度娘链接
然而= =:
比分治还跑的慢,坑比东西。
代码2
// poj3714
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std;
inline LL getint() {
int f,x=0;char ch=getchar();
while (ch<='0' || ch>'9') {if (ch=='-') f=-1;else f=1;ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int maxn=1000010;
struct point {double x,y;int flag;}p[maxn];
int n,block,m; bool cmp(point a,point b) {
return a.x==b.x ? a.y<b.y : a.x<b.x;
}
point rotate(point a,double x) {
return (point){(double)a.x*cos(x)-(double)a.y*sin(x),(double)a.y*cos(x)+(double)a.x*sin(x),a.flag};
}
double dis(point a,point b) {
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
int main() {
int T;scanf("%d",&T);
while (T--) {
scanf("%d",&n);
for (int i=1;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y),p[i].flag=0;
for (int i=1;i<=n;i++) scanf("%lf%lf",&p[i+n].x,&p[i+n].y),p[i+n].flag=1;
n<<=1;
block=(int)sqrt(n);
m=n/block+(n%block!=0);
double t=rand()/10000;
for (int i=1;i<=n;i++) p[i]=rotate(p[i],t);
sort(p+1,p+1+n,cmp);
double ans=1e60;
for (int i=1;i<=m;i++) {
int t1=block*(i-1),t2=min(block*i,n);
for (int j=t1;j<=t2;j++)
for (int k=t1+1;k<=t2;k++) if (p[j].flag!=p[k].flag) ans=min(ans,dis(p[j],p[k]));
}
printf("%.3f\n",ans);
}
return 0;
}