题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1568
分析:一道数学题
找出斐波那契数列的通项公式,再利用对数的性质就可得到前几位的数
斐波那契通项公式如下:
取完对数后(记fn为第n个数)
log10(fn)=-0.5*log10(5.0)+((double)n)*log(f)/log(10.0)+log10(1-((1-√5)/(1+√5))^n) 其中f=(sqrt(5.0)+1.0)/2.0;
最后取对数的小数部分就可得最终结果
代码如下:
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const double f=(sqrt(5.0)+)/2.0;
int fi[];
int main()
{
int n,i;
double bit;
fi[]=;fi[]=fi[]=;
for(i=;i<=;i++)
{
fi[i]=fi[i-]+fi[i-];
}
while(scanf("%d",&n)!=EOF)
{
if(n<=)
printf("%d\n",fi[n]);
else{
bit=-0.5*log10(5.0)+((double)n)*log(f)/log(10.0);
bit=bit-(int)bit;
bit=pow(10.0,bit);
while(bit<)bit*=;
printf("%d\n",(int)bit);
}
}
return ;
}