STL源码分析与实现-stl_list容器

时间:2024-11-28 23:05:02

1. stl_list 介绍

今天我们来总结一下stl_List, 通过之前介绍单链表的文章,其实对链表的基本操作已经十分熟悉了,那对于stl_list,无非就是链表结构不一样,至于其中的增删改查的细节实现本质是一样的,都是处理指针偏移。相比于vector,stl_List在插入和删除的时候可以达到O(1)的时间复杂度。

stl_list是一个双向循环链表,相对单链表来说查找效率高,无论是插入时的前插和后插,还是从后往前查找某个元素等。既然查找效率高了,自然添加,删除和修改元素时效率也就更高。唯一一个可以称为不足的就是每个节点需要耗费4字节指针来保存前一个节点的地址,因此如果遇到对内存要求比较苛刻的场景,而且一些操作单链表即可满足,那么可以考虑使用标准库中的forward_list(单链表)。stl_list双向循环链表基本结构图:

STL源码分析与实现-stl_list容器STL源码分析与实现-stl_list容器

2. stl_list 源码分析

分析gnu c++标准库中的stl_list,我们只需把握住整体结构即可,实现总共由三部分组成,链表节点(struct _List_node : public __detail::_List_node_base)
,迭代器(struct _List_iterator),链表数据结构(class list : protected _List_base)。

stl_list uml 图

STL源码分析与实现-stl_list容器

gnu下最新版本的stl_list实现加了一些额外的继承关系,_list_base中保存了一个_List_impl _M_impl中间变量,由该类_M_impl来保存节点,并对节点做基本处理。为了更好的理解,我们看面这个uml图即可。

STL源码分析与实现-stl_list容器

1.链表节点,父类维护两个指针,子类才加入具体的value。

    struct _List_node_base
{
_List_node_base* _M_next;
_List_node_base* _M_prev; }; template<typename _Tp>
struct _List_node : public __detail::_List_node_base
{
///< User's data.
_Tp _M_data; };

2.迭代器,主要是实现++和--等操作符重载,实现链表节点的前后移动。

  template<typename _Tp>
struct _List_iterator
{
typedef _List_iterator<_Tp> _Self;
typedef _List_node<_Tp> _Node; typedef ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
typedef _Tp value_type;
typedef _Tp* pointer;
typedef _Tp& reference; _List_iterator() _GLIBCXX_NOEXCEPT
: _M_node() { } explicit
_List_iterator(__detail::_List_node_base* __x) _GLIBCXX_NOEXCEPT
: _M_node(__x) { } _Self
_M_const_cast() const _GLIBCXX_NOEXCEPT
{ return *this; } // Must downcast from _List_node_base to _List_node to get to _M_data.
reference
operator*() const _GLIBCXX_NOEXCEPT
{ return static_cast<_Node*>(_M_node)->_M_data; } pointer
operator->() const _GLIBCXX_NOEXCEPT
{ return std::__addressof(static_cast<_Node*>(_M_node)->_M_data); } _Self&
operator++() _GLIBCXX_NOEXCEPT
{
_M_node = _M_node->_M_next; //本质是链表节点的next指针操作
return *this;
} _Self
operator++(int) _GLIBCXX_NOEXCEPT
{
_Self __tmp = *this;
_M_node = _M_node->_M_next;
return __tmp;
} _Self&
operator--() _GLIBCXX_NOEXCEPT
{
_M_node = _M_node->_M_prev; //本质是链表节点的prev指针操作
return *this;
} _Self
operator--(int) _GLIBCXX_NOEXCEPT
{
_Self __tmp = *this;
_M_node = _M_node->_M_prev;
return __tmp;
} bool
operator==(const _Self& __x) const _GLIBCXX_NOEXCEPT
{ return _M_node == __x._M_node; } bool
operator!=(const _Self& __x) const _GLIBCXX_NOEXCEPT
{ return _M_node != __x._M_node; } // The only member points to the %list element.
__detail::_List_node_base* _M_node; //维护一个链表节点
};

3.链表数据结构

实现类 _List_impl,主要用来维护链表节点,然后list类包含该类。

struct _List_impl
: public _Node_alloc_type
{ __detail::_List_node_base _M_node; //其实就是维护节点,标准库中用了一个中间层来处理 _List_impl()
: _Node_alloc_type(), _M_node()
{ } _List_impl(const _Node_alloc_type& __a) _GLIBCXX_NOEXCEPT
: _Node_alloc_type(__a), _M_node()
{ } #if __cplusplus >= 201103L
_List_impl(_Node_alloc_type&& __a) _GLIBCXX_NOEXCEPT
: _Node_alloc_type(std::move(__a)), _M_node()
{ }
#endif
};

_List_base类

 template<typename _Tp, typename _Alloc>
class _List_base
{
protected: typedef typename _Alloc::template rebind<_List_node<_Tp> >::other _Node_alloc_type; typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type; static size_t
_S_distance(const __detail::_List_node_base* __first,
const __detail::_List_node_base* __last)
{
size_t __n = 0;
while (__first != __last)
{
__first = __first->_M_next;
++__n;
}
return __n;
} _List_impl _M_impl; // 中间层类 // count the number of nodes
size_t _M_node_count() const
{
return _S_distance(_M_impl._M_node._M_next,
std::__addressof(_M_impl._M_node));
} public:
typedef _Alloc allocator_type; void
_M_clear() _GLIBCXX_NOEXCEPT; void
_M_init() _GLIBCXX_NOEXCEPT
{
this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
_M_set_size(0);
}
};

list类:

template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
class list : protected _List_base<_Tp, _Alloc>
{
// concept requirements
typedef typename _Alloc::value_type _Alloc_value_type;
__glibcxx_class_requires(_Tp, _SGIAssignableConcept)
__glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept) typedef _List_base<_Tp, _Alloc> _Base;
typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
typedef typename _Base::_Node_alloc_type _Node_alloc_type; public:
typedef _Tp value_type;
typedef typename _Tp_alloc_type::pointer pointer;
typedef typename _Tp_alloc_type::const_pointer const_pointer;
typedef typename _Tp_alloc_type::reference reference;
typedef typename _Tp_alloc_type::const_reference const_reference;
typedef _List_iterator<_Tp> iterator;
typedef _List_const_iterator<_Tp> const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Alloc allocator_type; protected:
// Note that pointers-to-_Node's can be ctor-converted to
// iterator types.
typedef _List_node<_Tp> _Node; using _Base::_M_impl;
using _Base::_M_put_node;
using _Base::_M_get_node;
using _Base::_M_get_Tp_allocator;
using _Base::_M_get_Node_allocator; .......................................................... }

大概截取了stl_list实现的一部分,主要为了体现stl_list的代码结构,具体接口实现可以查看源码。

3. stl_list 使用和简单实现

基本实现代码:

#include "stl_def.h"

/** @file stl_list.h
*
* This is an stl_list header file, implement double loop list warppes
*
* Created by yejy on 18-8-18
* copyright (c) yejy. all rights reserved
*
*/ __YAMI_BEGIN /* stl list allocate 直接使用默认new/delete */
template <typename T>
class list
{
public:
// 不包数据实体,只包含指针和相关操作, 可以认为是节省一个指针大小的内存
struct list_node_base
{
list_node_base* Next;
list_node_base* Prev; list_node_base():Next(nullptr), Prev(nullptr){}
}; // dataEntry node
struct list_node: public list_node_base
{
T dataEntry;
}; // 迭代器 iterator
struct list_iterator
{
typedef list_iterator _Self;
typedef T value_type;
typedef T* pointer;
typedef T& reference; list_iterator() _T_STD_NOEXCEPT
{
m_smartPtr = nullptr;
} explicit list_iterator(list_node_base * pNode) _T_STD_NOEXCEPT
{
m_smartPtr = pNode;
} reference operator*() _T_STD_NOEXCEPT
{
return static_cast<list_node *>(m_smartPtr)->dataEntry;
} list_node_base* operator->() _T_STD_NOEXCEPT
{
return m_smartPtr;
} _Self operator++(int) _T_STD_NOEXCEPT // 后 ++
{
_Self __tmp = *this;
m_smartPtr = m_smartPtr->Next;
return __tmp;
} _Self& operator++() _T_STD_NOEXCEPT // 前 ++
{
m_smartPtr = m_smartPtr->Next;
return *this;
} _Self operator--(int) _T_STD_NOEXCEPT
{
_Self __tmp = *this;
m_smartPtr = m_smartPtr->Prev;
return __tmp;
} _Self& operator--() _T_STD_NOEXCEPT
{
m_smartPtr = m_smartPtr->Prev;
return *this;
} bool operator==(const list_iterator & _Right) const _T_STD_NOEXCEPT
{
return m_smartPtr == _Right.m_smartPtr;
} bool operator!=(const list_iterator & _Right) const _T_STD_NOEXCEPT
{
return m_smartPtr != _Right.m_smartPtr;
} list_node_base * m_smartPtr; // 节点指针
}; public:
typedef list_iterator iterator; public:
list() // 默认构造
{
empty_init();
} list(const list<T> & rhs) // 拷贝构造
{
if(this != &rhs)
{
empty_init(); // 初始化 iterator itrBegin = rhs.begin();
iterator itrEnd = rhs.end(); while(itrBegin != itrEnd)
{
list_node * tmp = static_cast<list_node *>(itrBegin.m_smartPtr); push_back(tmp->dataEntry); ++itrBegin;
}
}
} list & operator = (const list<T> & rhs) // 赋值运算符重载
{
if(this != &rhs)
{
// 如果原来链表有值,则先清空
if(begin() != end())
{
clear();
} iterator itrBegin = rhs.begin();
iterator itrEnd = rhs.end(); while(itrBegin != itrEnd)
{
list_node * tmp = static_cast<list_node *>(itrBegin.m_smartPtr); push_back(tmp->dataEntry); ++itrBegin;
}
}
} ~list()
{
clear(); if(pHeadNode)
{
delete pHeadNode;
pHeadNode = nullptr;
}
} iterator begin() _T_STD_NOEXCEPT
{
return iterator(pHeadNode->Next);
} iterator end() _T_STD_NOEXCEPT
{
return iterator(pHeadNode);
} void push_back(const T & value)
{
insert(end(), value);
} void push_front(const T & value)
{
insert(begin(), value);
} void pop_front()
{
erase(begin());
} void pop_back()
{
iterator tmp = end();
erase(--tmp);
} T & front()
{
return *begin();
} T & back()
{
return *(--end());
} unsigned int remove(const T & value)
{
unsigned int count = 0; iterator itrBegin = begin();
while(itrBegin != end())
{
if(*itrBegin == value)
{
itrBegin = erase(itrBegin);
++count;
}
else
{
++itrBegin;
}
} return count;
} iterator erase(iterator position)
{
list_node_base* next_node = position.m_smartPtr->Next;
list_node_base* prev_node = position.m_smartPtr->Prev;
prev_node->Next = next_node;
next_node->Prev = prev_node; delete position.m_smartPtr;
position.m_smartPtr = nullptr; if(_size > 0)
{
_size--;
} return iterator(next_node);
} iterator insert(iterator position, const T& x)
{
list_node* tmp = new list_node();
tmp->dataEntry = x;
tmp->Next = position.m_smartPtr;
tmp->Prev = position.m_smartPtr->Prev;
position.m_smartPtr->Prev->Next = tmp;
position.m_smartPtr->Prev = tmp; ++_size;
return iterator(tmp);
} void clear()
{
iterator itrBegin = begin();
while(itrBegin != end())
{
list_node* tmp = static_cast<list_node *>(itrBegin.m_smartPtr); ++itrBegin; if(tmp)
{
delete tmp; // 差点犯了一个错误,delete会对用析构函数,并且释放内存。 需要析构子类还是父类,一定要传入正确类型
}
} pHeadNode->Next = pHeadNode;
pHeadNode->Prev = pHeadNode;
_size = 0;
} int size()
{
return _size;
} private:
void empty_init()
{
pHeadNode = new list_node_base();
pHeadNode->Next = pHeadNode; // 初始化指针指向自己
pHeadNode->Prev = pHeadNode; _size = 0;
} private:
list_node_base* pHeadNode; // 链表头 unsigned int _size; // 链表个数,提高查找效率,如果想为了节省内存,可以不要,临时查找
}; __YAMI_END

测试代码:

#include "stl_list.h"
#include <iostream> class Test
{
public:
Test()
{
std::cout << "construct.." << std::endl;
} void method()
{
std::cout << "welcome Test.." << std::endl;
} ~Test()
{
std::cout << "destruct.." << std::endl;
}
}; void printfList(Yami::list<int> & list_INT)
{
Yami::list<int>::list_iterator itrBegin = list_INT.begin(); while(itrBegin != list_INT.end())
{
std::cout << *itrBegin;
itrBegin++;
} std::cout << std::endl;
} int main(int argc, char * argv[])
{
std::cout << "Test bdgin !" << std::endl;
// test int
Yami::list<int> list_INT;
list_INT.push_back(1);
list_INT.push_back(2);
list_INT.push_back(3);
list_INT.push_back(4);
list_INT.push_back(5);
list_INT.push_back(2); printfList(list_INT); std::cout << "delete nums: "<< list_INT.remove(2) << std::endl; printfList(list_INT); Yami::list<int> list_INT1;
list_INT1.push_front(1);
list_INT1.push_front(2);
list_INT1.push_front(3);
list_INT1.push_front(4);
list_INT1.push_front(5); printfList(list_INT1); std::cout << "front: "<< list_INT1.front()<< std::endl; std::cout << "back: " << list_INT1.back()<< std::endl; list_INT1.pop_back(); list_INT1.pop_front(); std::cout << "size: " << list_INT1.size()<< std::endl; printfList(list_INT1); // test class 主要看一下资源析构情况
Test test1;
Test test2;
Test test3;
Yami::list<Test> list_CLASS;
list_CLASS.push_back(test1);
list_CLASS.push_back(test2);
list_CLASS.push_back(test3); std::cout << list_CLASS.size() << std::endl; list_CLASS.clear(); std::cout << list_CLASS.size() << std::endl; // test string
Yami::list<std::string> list_STRING; list_STRING.push_back("nihao");
list_STRING.push_back("thanks");
list_STRING.push_back("goodbye");
list_STRING.push_back("seeyou"); Yami::list<std::string>::list_iterator itBegin = list_STRING.begin(); while(itBegin != list_STRING.end())
{
std::cout << " "<< (*itBegin).c_str();
itBegin++;
} std::cout << std::endl; std::cout << "Test end !" << std::endl;
return 0;
}

测试结果:

bash-4.2$ ./stl_list
Test bdgin !
123452
delete nums: 2
1345
54321
front: 5
back: 1
size: 3
432
construct..
construct..
construct..
construct..
construct..
construct..
3
destruct..
destruct..
destruct..
0
nihao thanks goodbye seeyou
Test end !
destruct..
destruct..
destruct..

4. 总结

自己参考标准库中的stl源码实现了一个stl_list。 总的来说,stl_list实现相对简单,迭代器专门负责元素的遍历查找,主要实现++,--,*,->等运算符重载;list类实现循环双向链表的初始化,插入和删除操作,如果涉及到查找,则使用迭代器完成!

实现源码参考:stl_implement

2018/9/22 20:46:44