【xsy2504】farm 容斥原理

时间:2024-11-27 11:07:25

题目大意:给你三个数$n,m,s$,满足$n,m,s≤10^{18}$且最大质因数均不大于$10^6$。

问你存在多少个整数$k$,满足$0≤k≤m$,且$(k,0)$,$(0,n)$,$(x,y)$组成的三角形面积为$s$,其中$x,y$均为整数。

同时,问你存在多少个整数$p$,满足$0≤p<n$,且$(0,0)$,$(0,p)$,$(x,y)$组成的三角形面积为$s$,其中$x,y$均为整数。

请输出两个问题的和。

不超过1000组数据。

对于第一个问题,我们列出三角形面积的式子

【xsy2504】farm 容斥原理

s=(s黄+s灰+s蓝+s红)-s灰-s红-s蓝

$s=|\frac{1}{2}nk-\frac{1}{2}x(n-y)-xy-\frac{1}{2}y(k-x)|$

经过化简,有$|k(y-n)+nx|=2s$

若方程有整数解,则有$gcd(k,n)|2s$

我们设$N[i]$表示数字$n$中出现了多少个质因数$p[i],K[i],S[i]$同理。

若$N[i]>S[i]$,那么有$K[i]≤S[i]$。

基于这个性质,我们就可以通过容斥原理来求了,详见代码。

考虑第二个问题,第二个问题显然是求$s$的约数个数,随便搜一下就可以了。

时间复杂度:$O(2^{16}+\sigma(10^{18}))$

 #include<bits/stdc++.h>
#define MM 1000005
#define NN 80000
#define L long long
using namespace std; L pow_mod(L x,L k){L ans=; for(;k;k>>=,x=x*x) if(k&) ans=ans*x; return ans;} int pri[MM]={},b[MM]={},use=,last[MM]={},id[MM]={};
void init(){
for(int i=;i<MM;i++){
if(!b[i]) pri[++use]=i,last[i]=,id[i]=use;
for(int j=;j<=use&&i*pri[j]<MM;j++){
b[i*pri[j]]=; last[i*pri[j]]=i;
if(i%pri[j]==) break;
}
}
} int M[NN]={},N[NN]={},S[NN]={};
L a[MM]={},m,n,s,ans=,hh=; void rd(L &res,int cnt[]){
res=;
for(int i=;i<;i++){
int x; scanf("%d",&x);
for(res*=x;x>;x=last[x])
cnt[id[x/last[x]]]++;
}
}
void dfs(L x,L id){
if(id==hh)
return void(ans+=(x<=n));
int ID=a[id];
for(int i=;i<=S[ID];i++){
dfs(x,id+);
x=x*pri[ID];
}
}
void solve(){
memset(M,,sizeof(M)); memset(N,,sizeof(N)); memset(S,,sizeof(S)); ans=hh=;
rd(n,N); rd(m,M); rd(s,S);
s<<=; S[]++;
for(int i=;i<NN;i++) if(N[i]>S[i]) a[hh++]=pow(pri[i],S[i]+);
for(int i=;i<(<<hh);i++){
L mul=,zf=;
for(int j=;j<hh;j++)
if(i&(<<j)){
mul=mul*a[j]; zf=-zf;
}
ans=ans+(m/mul)*zf;
}
hh=; for(int i=;i<NN;i++) if(S[i]) a[hh++]=i;
dfs(,);
printf("%lld\n",ans);
} int main(){
init();
int t; cin>>t;
while(t--) solve();
}