题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1564
题意:给出一棵treap,即每个点的数据 值、权值。根的数据值大于左孩子小于右孩子,根的权值比左右孩子都小。另外定义每个节点的访问次数,每个节点的代价为访问次数乘以深度(根深度为1)。整 棵树的代价为每个节点的代价和。现在可以修改节点的权值,每修改一个代价为K。要求最后整棵树的代价与修改代价最小。
思路:首先将权值离散化,将节点按照数据值排序。f[L][R][m]表示将区间[L,R]建立成满足题意的树,根节点的权值>=m的最小代价。那么对于每个区间,枚举每个点作为根节点,那么被枚举到的节点的权值要么修改,要么不修改。
i64 f[N][N][N];
struct node
{
int data,weight,freq;
int operator<(const node &a) const
{
return data<a.data;
}
};
node a[N];
int n,K;
int search(vector<int> V,int n,int x)
{
int low=0,high=n-1,mid;
while(low<=high)
{
mid=(low+high)>>1;
if(V[mid]==x) return mid;
if(V[mid]>x) high=mid-1;
else low=mid+1;
}
}
void up(i64 &x,i64 y)
{
if(y<x) x=y;
}
i64 DFS(int L,int R,int m)
{
if(L>R) return 0;
if(f[L][R][m]!=-1) return f[L][R][m];
i64 ans=inf;
int i;
for(i=L;i<=R;i++)
{
up(ans,DFS(L,i-1,m)+DFS(i+1,R,m)+K);
if(a[i].weight>=m)
{
up(ans,DFS(L,i-1,a[i].weight+1)+DFS(i+1,R,a[i].weight+1));
}
}
ans+=a[R].freq-a[L-1].freq;
return f[L][R][m]=ans;
}
int main()
{
RD(n,K);
int i;
FOR1(i,n) RD(a[i].data);
FOR1(i,n) RD(a[i].weight);
FOR1(i,n) RD(a[i].freq);
sort(a+1,a+n+1);
vector<int> V;
FOR1(i,n) V.pb(a[i].weight);
sort(V.begin(),V.end());
FOR1(i,n) a[i].weight=1+search(V,n,a[i].weight);
FOR1(i,n) a[i].freq+=a[i-1].freq;
clr(f,-1);
PR(DFS(1,n,1));
}