官网链接:
http://spark.apache.org/docs/latest/sql-programming-guide.html#jdbc-to-other-databases
http://spark.apache.org/docs/latest/sql-data-sources-jdbc.html
1. 过滤数据
情景:使用spark通过JDBC的方式读取postgresql数据库中的表然后存储到hive表*后面数据处理使用,但是只读取postgresql表中的某些字段,并且做一下数据上的过滤
根据平常的方式,基本都是读取整张表,感觉不应该这么不友好的,于是去官网翻了翻,如下:
指定dbtable参数时候可以使用子查询的方式,不单纯是指定表名
测试代码如下:
package com.kong.test.test; import java.util.Properties; import org.apache.spark.sql.SaveMode; import org.apache.spark.sql.SparkSession; import org.apache.spark.sql.types.DataTypes; public class SparkHiveTest { public static void main(String[] args) { SparkSession spark = SparkSession .builder() .appName("SparkCalibration") .master("local") .enableHiveSupport() .getOrCreate(); spark.sparkContext().setLogLevel("ERROR"); spark.sparkContext().setLocalProperty("spark.scheduler.pool", "production"); String t2 = "(select id, name from test1) tmp";//这里需要有个别名 String createSql = "create table if not exists default.test1 (\r\n" + "id string,\r\n" + "name string\r\n" + ")ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' stored as TEXTFILE"; spark.sql(createSql); spark.read().format("jdbc") .option("url", "jdbc:postgresql://ip address/database") .option("dbtable", t2).option("user", "login user").option("password", "login passwd") .option("fetchsize", "1000") .load() .createOrReplaceTempView("test1_tmp"); spark.sql("insert overwrite table default.test1 select * from test1_tmp").show(); } }
另外:如果对于hive表的存储格式没有要求,可以更简洁,如下:
spark.read().format("jdbc") .option("url", "jdbc:postgresql://ip address/database") .option("dbtable", t2).option("user", "login user").option("password", "login passwd") .option("fetchsize", "1000") .load().write().mode(SaveMode.Overwrite).saveAsTable("default.test");
至于基于哪种保存模式(SaveMode.Overwrite)可以结合实际场景;另外spark saveAsTable()默认是以parquet+snappy的形式写数据(生成的文件名.snappy.parquet),当然,也可以通过format()传入参数,使用orc等格式,并且可以指定其他压缩方式。
2. spark通过JDBC读取外部数据库的源码实现
2.1 最简洁的api,单分区
源码如下:
/** * Construct a `DataFrame` representing the database table accessible via JDBC URL * url named table and connection properties. * * @since 1.4.0 */ def jdbc(url: String, table: String, properties: Properties): DataFrame = { assertNoSpecifiedSchema("jdbc") // properties should override settings in extraOptions. this.extraOptions ++= properties.asScala // explicit url and dbtable should override all this.extraOptions += (JDBCOptions.JDBC_URL -> url, JDBCOptions.JDBC_TABLE_NAME -> table) format("jdbc").load() }
2.2 指定表某个字段的上下限值(数值类型),生成相对应的where条件并行读取,源码如下:
/** * Construct a `DataFrame` representing the database table accessible via JDBC URL * url named table. Partitions of the table will be retrieved in parallel based on the parameters * passed to this function. * * Don't create too many partitions in parallel on a large cluster; otherwise Spark might crash * your external database systems. * * @param url JDBC database url of the form `jdbc:subprotocol:subname`. * @param table Name of the table in the external database. * @param columnName the name of a column of integral type that will be used for partitioning. * @param lowerBound the minimum value of `columnName` used to decide partition stride. * @param upperBound the maximum value of `columnName` used to decide partition stride. * @param numPartitions the number of partitions. This, along with `lowerBound` (inclusive), * `upperBound` (exclusive), form partition strides for generated WHERE * clause expressions used to split the column `columnName` evenly. When * the input is less than 1, the number is set to 1. * @param connectionProperties JDBC database connection arguments, a list of arbitrary string * tag/value. Normally at least a "user" and "password" property * should be included. "fetchsize" can be used to control the * number of rows per fetch. * @since 1.4.0 */ def jdbc( url: String, table: String, columnName: String, lowerBound: Long, upperBound: Long, numPartitions: Int, connectionProperties: Properties): DataFrame = { // columnName, lowerBound, upperBound and numPartitions override settings in extraOptions. this.extraOptions ++= Map( JDBCOptions.JDBC_PARTITION_COLUMN -> columnName, JDBCOptions.JDBC_LOWER_BOUND -> lowerBound.toString, JDBCOptions.JDBC_UPPER_BOUND -> upperBound.toString, JDBCOptions.JDBC_NUM_PARTITIONS -> numPartitions.toString) jdbc(url, table, connectionProperties) }
2.3 通过predicates: Array[String],传入每个分区的where子句中的谓词条件,并行读取,比如 :
String[] predicates = new String[] {"date <= '20180501'","date > '20180501' and date <= '20181001'","date > '20181001'"};
/** * Construct a `DataFrame` representing the database table accessible via JDBC URL * url named table using connection properties. The `predicates` parameter gives a list * expressions suitable for inclusion in WHERE clauses; each one defines one partition * of the `DataFrame`. * * Don't create too many partitions in parallel on a large cluster; otherwise Spark might crash * your external database systems. * * @param url JDBC database url of the form `jdbc:subprotocol:subname` * @param table Name of the table in the external database. * @param predicates Condition in the where clause for each partition. * @param connectionProperties JDBC database connection arguments, a list of arbitrary string * tag/value. Normally at least a "user" and "password" property * should be included. "fetchsize" can be used to control the * number of rows per fetch. * @since 1.4.0 */ def jdbc( url: String, table: String, predicates: Array[String], connectionProperties: Properties): DataFrame = { assertNoSpecifiedSchema("jdbc") // connectionProperties should override settings in extraOptions. val params = extraOptions.toMap ++ connectionProperties.asScala.toMap val options = new JDBCOptions(url, table, params) val parts: Array[Partition] = predicates.zipWithIndex.map { case (part, i) => JDBCPartition(part, i) : Partition } val relation = JDBCRelation(parts, options)(sparkSession) sparkSession.baseRelationToDataFrame(relation) }