引言
本文来自于Google的一道题目:
how to merge two binary search tree into balanced binary search tree. how to merge two binary search tree into balanced binary search tree.. Let there be m elements in first tree and n elements in the other tree. Your merge function should take O(m+n) time and do it in place.
http://www.careercup.com/question?id=5261732222074880
要线性时间内完成,而且要求in place,不难想到把BST转换为Double linked list。
然后将两个dll merge。但是,存在线性时间复杂度的算法,把dll转化成BST吗?
下面就是本文要记述的内容,算法参考自
http://www.geeksforgeeks.org/in-place-conversion-of-sorted-dll-to-balanced-bst/
已排序的 Double linked list 转化为 BST
因为要求线性时间,所以必须保证DLL上的每个节点只被访问 consant 次,最好是一次。
既然要求每个节点只能被访问一次,那么从根节点构造肯定是不行的。这种算法让BST从叶节点开始被构造,通过灵活地运用递归,巧妙地实现了自底向上构造BST的过程,而且还能保证BST是平衡的。
#include<iostream>
#include<stack>
using namespace std; struct BSTNode{
int val;
BSTNode *left;
BSTNode *right;
BSTNode(int v): val(v), left(NULL), right(NULL){}
}; class BSTtoDLL{
public:
BSTNode *func(BSTNode *root){
BSTtoDLLCore(root);
return head;
} private:
BSTNode* pre = NULL;
BSTNode* head = NULL;
void BSTtoDLLCore(BSTNode *root){
if(!root) return;
BSTtoDLLCore(root -> left);
if(pre){
pre -> right = root;
root -> left = pre;
}else{
head = root;
}
pre = root;
BSTtoDLLCore(root -> right);
}
}; class DLLtoBalancedBST{
public:
BSTNode* func(BSTNode* head){
if(!head) return head;
int n = ;
for(BSTNode *p = head; p; ++n, p = p -> right);
return DLLtoBalancedBSTCore(&head, n);
}
private:
//DLL to BST in place, Time O(N), Space O(LogN) for stack, N is the amount of nodes.
//DLL needs to be sorted.
BSTNode* DLLtoBalancedBSTCore(BSTNode** headref, int n){
if(n == ) return NULL;
BSTNode* left = DLLtoBalancedBSTCore(headref, n/);
BSTNode *root = *headref;
root -> left = left;
*headref = root -> right;
root -> right = DLLtoBalancedBSTCore(headref, n-n/-);
return root;
} }; void InorderPrint(BSTNode* root){
if(!root) return;
stack<BSTNode *> st;
while(!st.empty() || root){
if(!root){
root = st.top();
st.pop();
cout << root -> val << ' ';
root = root -> right;
}else{
st.push(root);
root = root -> left;
}
}
cout << endl;
} int main(){ //Construct oringal BST
BSTNode *root = new BSTNode();
BSTNode *left3 = new BSTNode();
BSTNode *left1 = new BSTNode();
BSTNode *left2 = new BSTNode();
BSTNode *right6 = new BSTNode();
BSTNode *right7 = new BSTNode(); root -> left = left2;
left2 -> left = left1;
left2 -> right = left3;
root -> right = right7;
right7 -> left = right6; cout << "-------Inorder print BST-------\n";
InorderPrint(root); //Convert BST to DLL
BSTtoDLL bstdll;
BSTNode *head = bstdll.func(root);
BSTNode *p = head;
cout << "-------print converted double linked list----------\n";
for(; p->right != NULL; cout << p -> val << ' ', p = p -> right);
cout << endl;
for(; p != NULL; cout << p -> val << ' ', p = p -> left);
cout << endl; //Convert DLL back to Balenced BST
DLLtoBalancedBST dllbst;
BSTNode *con_root = dllbst.func(head);
cout << "-------Inorder print converted BST-------\n";
InorderPrint(con_root); return ;
}
高亮部分为转化过程。
每次递归,headaddr这个指向节点的指针向末尾移动一次。因此每个节点只被访问一次,时间复杂度是线性的。
我们可以发现,这种算法对单向链表也适用。当然单链表不能保证in place,必须新申明节点,但是时间复杂度依然是线性的。
下面给出单向链表上的实现。
已排序的单向Linked list 转化为BST
#include<iostream>
#include<stack>
using namespace std; struct ListNode{
int val;
ListNode* next;
ListNode(int v): val(v), next(NULL){}
}; struct BSTnode{
int val;
BSTnode* left;
BSTnode* right;
BSTnode(int v): val(v), left(NULL), right(NULL){}
}; BSTnode *LLtoBSTCore(ListNode **headaddr, int n){
if(n <= ) return NULL;
BSTnode *left = LLtoBSTCore(headaddr, n/);
BSTnode *root = new BSTnode((*headaddr) -> val);
root -> left = left;
*headaddr = (*headaddr) -> next;
root -> right = LLtoBSTCore(headaddr, n-n/-);
return root;
} BSTnode *LLtoBST(ListNode *head){
if(!head) return NULL;
int n = ; ListNode *p = head;
for(; p; ++n, p = p -> next);
return LLtoBSTCore(&head, n);
} int main(){
ListNode *head = new ListNode();
ListNode *end = head;
for(int i = ; i <= ; end -> next = new ListNode(i++), end = end -> next);
cout << "List: \n";
for(ListNode *p = head; p; cout << p -> val << ' ', p = p -> next);
cout << endl; BSTnode *root = LLtoBST(head); cout << "BST inorder: " << endl;
stack<BSTnode *> st;
while(!st.empty() || root){
if(!root){
root = st.top();
st.pop();
cout << root -> val << " ";
root = root -> right;
}else{
st.push(root);
root = root -> left;
}
}
cout << endl; }
高亮部分为转化过程。
给一个已排序的序列的 Iterator,将序列转化为BST
再推而广之,对于给定一个只能向 next 移动的iterator,通过这个算法也能构造将 iterator 经过的节点构造为BST。不过我们事先知道或者计算出序列的长度。
这里给出C#的实现代码。IEnumerator 就是一个迭代器,支持MoveNext() - 将迭代器往后移,Current 属性 - 返回迭代器当前所指向的值。
高亮部分为基于IEnumrator的构造过程。
因为接口IEnumerator 不是.NET CLR 中的 primitive type(基元类型),因此将 IEnumerator 赋值或者作为函数参数时,都是按引用传递,这正是我们需要的。因此C#的实现代码省去了C++中使用 两个**的麻烦。
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks; namespace ConsoleApplication1
{
public class BSTNode<T>
{
public T val;
public BSTNode<T> left;
public BSTNode<T> right;
public BSTNode(T v)
{
val = v;
left = null;
right = null;
}
} /// <summary>
/// Build Binary search tree from given iterator
/// </summary>
public class BuildBST
{
public BSTNode<T> BuildFromIEt<T>(IEnumerator<T> it, int n)
{
if (n == ) return null;
BSTNode<T> left = BuildFromIEt(it, n / );
it.MoveNext();
BSTNode<T> node = new BSTNode<T>(it.Current);
node.left = left;
node.right = BuildFromIEt(it, n - n / - ); return node;
}
} /// <summary>
/// A class to out put nodes in a tree
/// </summary>
public class TreeTrav
{
public static void Inorde<T>(BSTNode<T> root)
{
if (root == null) return;
Stack<BSTNode<T>> st = new Stack<BSTNode<T>>();
while (root != null || st.Count > )
{
if (root == null)
{
root = st.Peek();
st.Pop();
Console.Write(root.val.ToString() + ' ');
root = root.right;
}
else
{
st.Push(root);
root = root.left;
}
}
Console.WriteLine();
}
} class Program
{ static void Main(string[] args)
{
IEnumerable<int> list = new List<int>() { , , , , , }; Console.WriteLine("----Original list----");
for (IEnumerator<int> it = list.GetEnumerator(); it.MoveNext(); Console.Write(it.Current.ToString() + ' ')) ;
Console.WriteLine(); BuildBST buildBST = new BuildBST();
BSTNode<int> root = buildBST.BuildFromIEt(list.GetEnumerator(), list.Count());
Console.WriteLine("----Inorder traverse generated BST----");
TreeTrav.Inorde(root);
Console.Read();
}
}
}