链接:
https://vjudge.net/problem/LightOJ-1095
题意:
Consider this sequence {1, 2, 3 ... N}, as an initial sequence of first N natural numbers. You can rearrange this sequence in many ways. There will be a total of N! arrangements. You have to calculate the number of arrangement of first N natural numbers, where in first M positions; exactly K numbers are in their initial position.
For Example, N = 5, M = 3, K = 2
You should count this arrangement {1, 4, 3, 2, 5}, here in first 3 positions 1 is in 1st position and 3 in 3rd position. So exactly 2 of its first 3 are in there initial position.
But you should not count {1, 2, 3, 4, 5}.
思路:
错排:
F[n] = (n-1)*(F[n-1]+F[n-2]),F[i]为长度i的错排种类。
递推:
第一步,首元素插到剩下n-1个元素位置k。
第二步,可以选择将k插到首位置,此时就剩下n-2个,即F[n-2]
可以不插到首位置,将原本k位置元素删除,k插到首元素位置,看成k位置,则为F[n-1]
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<utility>
using namespace std;
typedef long long LL;
const int INF = 1e9;
const int MAXN = 1e3+10;
const int MOD = 1e9+7;
int n, k, m;
LL P[MAXN], F[MAXN];
LL PowMod(LL a, LL b)
{
LL res = 1;
while(b)
{
if (b&1)
res = (1LL*res*a)%MOD;
a = (1LL*a*a)%MOD;
b >>= 1;
}
return res;
}
LL Com(LL a, LL b)
{
if (b == 0 || a == b)
return 1;
return 1LL*P[a]*PowMod(P[b]*P[a-b]%MOD, MOD-2)%MOD;
}
void Init()
{
P[1] = 1;
for (int i = 2;i < MAXN;i++)
P[i] = 1LL*i*P[i-1]%MOD;
F[1] = 0, F[0] = F[2] = 1;
for (int i = 3;i < MAXN;i++)
F[i] = 1LL*(i-1)*((F[i-1]+F[i-2])%MOD)%MOD;
}
int main()
{
Init();
int cnt = 0;
int t;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++cnt);
scanf("%d%d%d", &n, &m, &k);
LL res = 0LL;
for (int i = 0;i <= n-m;i++)
res = ((res + 1LL*Com(n-m, i)*F[n-k-i]%MOD)%MOD+MOD)%MOD;
res = 1LL*res*Com(m, k)%MOD;
printf(" %lld\n", res);
}
return 0;
}