The great dog detective Sherlock Bones is on the verge of a new discovery. But for this problem, he needs the help of his most trusted advisor -you- to help him fetch the answer to this case.
He is given a string of zeros and ones and length N.
Let F(x, y) equal to the number of ones in the string between indices x and yinclusively.
Your task is to help Sherlock Bones find the number of ways to choose indices (i, j, k) such that i < j < k, sj is equal to 1, and F(i, j) is equal to F(j, k).
Input
The first line of input is T – the number of test cases.
The first line of each test case is an integer N (3 ≤ N ≤ 2 × 105).
The second line is a string of zeros and ones of length N.
Output
For each test case, output a line containing a single integer- the number of ways to choose indices (i, j, k).
Example
3
5
01010
6
101001
7
1101011
3
7 题意:
给定01字符串,求有多少个三元组i,j,k满足i<j<k且F(i, j)=F(j, k).其中F(x,y)是字符串下标x到y的一的个数。
下标为j的一定要是1。
思路:
先处理一下0的数量分布。比如00110就是2,0,1
假设字符串以0为开头和结尾,那么字符串便可以表示为:
a,1,b,1,c,1,d,1,e,1,f
其中字母表示0的数量。
枚举j在哪一个1上,便可以得出以下式子、
ans=a*b+ b*c+a*d+ c*d+b*e+a*f+ d*e+c*f+ e*f;
可以看出,每一个字母其实就是要与之后奇数或偶数的后缀和相乘,乘积相加就是结果。
但是这样仍然不对,因为i可k还可以指向1.
于是我们把每个字母的值加上一个1,再进行计算即可。
然而这样还是有问题。
相邻的两个字母相乘时不需要+1,于是我们再用一个for循环处理一下即可。
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
#define ls (t<<1)
#define rs ((t<<1)+1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int inf = 2.1e9;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-);
char s[maxn];
vector<ll>v;
ll sum[maxn];
int main()
{
int T;
scanf("%d",&T);
while(T--){int len;
scanf("%d%s",&len,s);
memset(sum,,sizeof(sum));
v.clear();
ll ans=;
for(int i=;i<len;i++){
if(s[i]==''){
ans++;
}
else{
v.push_back(ans);
ans=;
}
}
v.push_back(ans);
int sz=v.size();
for(int i=sz-;i>=;i--){
sum[i]=v[i]+sum[i+];
}
ans=;
for(int i=;i<sz;i++){
ans+=v[i]*sum[i+];
}
for(int i=;i<sz-;i++){
ans-=v[i]*v[i+]-(v[i]-)*(v[i+]-);
}
printf("%lld\n",ans);
}
return ;
}