hdu-2814-Interesting Fibonacci-斐波那契周期节

时间:2021-08-02 09:41:55

哇,其实我2A该。。。。否1A纯脑损伤。。

乞讨:F(a^b)^(F(a^b) ^ (n-1))%c 

既是求F(a^b)^(F(a^b) ^ (n-1)%phi[c]+phi[c])%c

先求x=F(a^b)%phi[c],有循环节,直接找到循环节就OK。

然后求y=F(a^b)%c,同求x,循环节。

然后问题就变成求y^(x^(n-1)%phi[c]+phi[c])

直接套两次高速幂取模就OK。

#include <iostream>

#include<stdio.h>

#include<vector>

#include<queue>

#include<stack>

#include<string.h>

#include<algorithm>

#include<math.h>

using namespace std;

#define LL unsigned __int64

#define lcm(a,b) (a*b/gcd(a,b))

//O(n)求素数,1-n的欧拉数

#define N 110000

struct math_use

{

    LL euler(LL x)

    {

        LL i, res = x;

        for (i = 2; i*i <= x; i++)

            if (x%i == 0)

            {

                res = res / i*(i - 1);

                while (x%i == 0)

                    x /= i;

            }

        if (x > 1)

            res = res / x*(x - 1);

        return res;

    }

//a^b%c

    LL q_mod(LL a,LL b,LL n)

    {

        LL ret=1;

        LL tmp=a;

        while(b)

        {

            //基数存在

            if(b&0x1) ret=ret*tmp%n;

            tmp=tmp*tmp%n;

            b>>=1;

        }

        return ret;

    }

} M;

int smod[330];

int eur[330];

LL s_mod(int mod)

{

    LL a1,a2,a3,tmp;

    a1=0;

    a2=1;

    a3=1;

    LL ans=1;

    while(a2!=0||a3!=1)

    {

        tmp=(a2+a3)%mod;

        a2=a3;

        a3=tmp;

        ans++;

    }

    return ans;

}

void init()

{

    smod[1]=1;

    eur[1]=M.euler(1);

    for(int i=2; i<=300; i++)

    {

        smod[i]=s_mod(i);

        eur[i]=M.euler(i);

    }

}

LL get_fib(int x,int mod)

{

    if(x==0)return 0;

    LL a1,a2,a3,tmp;

    a1=0;

    a2=a3=1;

    x--;

    while(x--)

    {

        tmp=(a2+a3)%mod;

        a2=a3;

        a3=tmp;

    }

    return a2;

}

LL fib(LL a,LL b,LL mod)

{

    LL ans=1;

    int yu=smod[mod];

    LL s=M.q_mod(a%yu,b,yu);

    return get_fib(s,mod);

}

int main()

{

    LL a,b,n,c;

    init();

    LL T;

    cin>>T;

    int cas=0;

    while(T--)

    {

        cas++;

        cin>>a>>b>>n>>c;

        if(c==1)

        {

            printf("Case %d: 0\n",cas);

            continue;

        }

        LL x,y;

        LL mod,mod1;

        mod=c;

        mod1=eur[c];

        x=fib(a,b,mod1);

        y=fib(a,b,mod);

        LL p=M.q_mod(x,(n-1)%eur[mod1]+eur[mod1],mod1);

        LL ans=M.q_mod(y,p+mod1,mod);

        printf("Case %d: ",cas);

        cout<<ans<<endl;

    }

    return 0;

}

版权声明:本文博主原创文章,博客,未经同意不得转载。