1、数据是使用scrapy-redis爬取的,存放在redis里面,爬取的是最近大热电影《海王》
2、使用了jieba中文分词解析库
3、使用了停用词stopwords,过滤掉一些无意义的词
4、使用matplotlib+wordcloud绘图展示
from redis import Redis
import json
import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt
# 加载停用词
# stopwords = set(map(lambda x: x.rstrip('\n'), open('chineseStopWords.txt').readlines()))
stopwords = set()
with open('chineseStopWords.txt') as f:
for line in f.readlines():
stopwords.add(line.rstrip('\n'))
stopwords.add(' ')
# print(stopwords)
# print(len(stopwords))
# 读取影评
db = Redis(host='localhost')
items = db.lrange('review:items', 0, -1)
# print(items)
# print(len(items))
# 统计每个word出现的次数
# 过滤掉停用词
# 记录总数,用于计算词频
words = {}
total = 0
for item in items:
data = json.loads(item)['review']
# print(data)
# print('------------')
for word in jieba.cut(data):
if word not in stopwords:
words[word] = words.get(word, 0) + 1
total += 1
print(sorted(words.items(), key=lambda x: x[1], reverse=True))
# print(len(words))
# print(total)
# 词频
freq = {k: v / total for k, v in words.items()}
print(sorted(freq.items(), key=lambda x: x[1], reverse=True))
# 词云
wordcloud = WordCloud(font_path='simhei.ttf',
width=500,
height=300,
scale=10,
max_words=200,
max_font_size=40).fit_words(frequencies=freq) # Create a word_cloud from words and frequencies
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis('off')
plt.show()
绘图结果:
参考:
https://github.com/amueller/word_cloud
http://amueller.github.io/word_cloud/