SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元

时间:2023-03-08 17:17:51

【题目分析】

Matrix-Tree定理+高斯消元

求矩阵行列式的值,就可以得到生成树的个数。

至于证明,可以去看Vflea King(炸树狂魔)的博客

【代码】

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

#define eps 1e-8
#define maxn 15
double C[maxn][maxn],G[maxn][maxn],A[maxn][maxn];
int tt,n,m,a,b;

void Gauss()
{
	double ret=1;
	for (int i=1;i<n;++i)
	{
		for (int j=i+1;j<n;++j)
			while (fabs(C[j][i])>eps)
			{
				double t=C[i][i]/C[j][i];
				for (int k=i;k<n;++k)
					C[i][k]-=t*C[j][k];
				for (int k=i;k<n;++k)
					swap(C[i][k],C[j][k]);
				ret*=-1;
			}
		ret=ret*C[i][i];
	}
	printf("%.0f\n",ret);
}

int main()
{
	scanf("%d",&tt);
	while (tt--)
	{
		memset(G,0,sizeof G);
		memset(A,0,sizeof A);
		memset(C,0,sizeof C);
		scanf("%d%d",&n,&m);
		for (int i=1;i<=m;++i)
		{
			int a,b;
			scanf("%d%d",&a,&b);
			G[a][a]+=1;
			G[b][b]+=1;
			A[a][b]=A[b][a]=1;
		}
		for (int i=1;i<=n;++i)
			for (int j=1;j<=n;++j)
				C[i][j]=G[i][j]-A[i][j];
		Gauss();
	}
}