日志=>flume=>kafka=>spark streaming=>hbase

时间:2022-05-10 19:49:54

  日志=>flume=>kafka=>spark streaming=>hbase

日志部分

#coding=UTF-8
import random
import time


url_paths = [
        "class/112.html", 
        "class/128.html", 
        "learn/821", 
        "class/145.html",
        "class/146.html",
        "class/131.html",
        "class/130.html",
        "course/list"
        ]


ip_slices = [132,156,124,10, 29, 167,143,187,30, 46, 55, 63, 72, 87,98,168]

http_referers = [
                        "http://www.baidu.com/s?wd={query}",
                        "http://www.sogou.com/web?query={query}",
                        "https://search.yahoo.com/search?p={query}",
                        "http://www.bing.com/search?q={query}"
                ]

search_keyword = ["Spark SQL实战", "Hadoop基础", "Storm实战", "Spark Streaming实战", "大数据面试"]

status_codes = ["200", "404", "500"]

def sample_url():
        return random.sample(url_paths,1)[0]

def sample_ip():
        slice = random.sample(ip_slices,4)
        return ".".join([str(item) for item in slice])

def sample_status_code():
        return random.sample(status_codes,1)[0]

def sample_referer():
        if random.uniform(0, 1) > 0.2:
                return "-"

        refer_str = random.sample(http_referers, 1)
        query_str = random.sample(search_keyword, 1)
        return refer_str[0].format(query=query_str[0])

def generate_log(count=3):
        time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
        f = open("/home/hadoop/data/project/logs/access.log", "w+")
        while count >= 1:
                query_log = "{ip}\t[{local_time}]\t\"GET /{url} HTTP/1.1\"\t{status_code}\t\"{referer}\"".format(ip=sample_ip() , local_time=time_str, url=sample_url(), status_code=sample_status_code(), referer=sample_referer())
                print query_log
                f.write(query_log + "\n")
                count = count - 1

if __name__ == '__main__':
        #print sample_ip()
        #print sample_url()
        generate_log(10)

 

 flume对接日志部分

 

exec-memory-kafka.conf
#exec-memory-kafka

exec-memory-kafka.sources = exec-source
exec-memory-kafka.channels = memory-channel
exec-memory-kafka.sinks = kafka-sink

exec-memory-kafka.sources.exec-source.type = exec
exec-memory-kafka.sources.exec-source.command = tail -F /home/hadoop/data/project/logs/access.log
exec-memory-kafka.sources.exec-source.shell = /bin/sh -c
exec-memory-kafka.sources.exec-source.channels = memory-channel
            
exec-memory-kafka.channels.memory-channel.type = memory
            
exec-memory-kafka.sinks.kafka-sink.type = org.apache.flume.sink.kafka.KafkaSink
exec-memory-kafka.sinks.kafka-sink.topic = streamingtopic
exec-memory-kafka.sinks.kafka-sink.brokerList = hadoop:9092
exec-memory-kafka.sinks.kafka-sink.batchSize = 5
exec-memory-kafka.sinks.kafka-sink.requiredAcks = 1
exec-memory-kafka.sinks.kafka-sink.channel = memory-channel

flume-ng agent \
--name exec-memory-kafka \
--conf $FLUME_HOME/conf \
--conf-file /home/hadoop/data/project/exec-memory-kafka.conf \
-Dflume.root.logger=INFO,console

 

启动kafka测试消费:kafka-console-consumer.sh --zookeeper hadoop:2181 --topic streamingtopic --from-beginning

 

启动Hadoop:start-dfs.sh


启动hbase: start-hbase.sh

进入hbase shell:hbase shell -> 查看: list
hbase表设计:
create 'lin_course_clickcount' ,'info'
create 'lin_course_search_clickcount','info'
查看表:scan 'lin_course_clickcount'
rowkey设计:
day_courseid
day_search_courseid

 

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.lin.spark</groupId>
    <artifactId>SparkStreaming</artifactId>
    <version>1.0-SNAPSHOT</version>
    <properties>
        <scala.version>2.11.8</scala.version>
        <kafka.version>0.9.0.0</kafka.version>
        <spark.version>2.2.0</spark.version>
        <hadoop.version>2.6.0-cdh5.7.0</hadoop.version>
        <hbase.version>1.2.0-cdh5.7.0</hbase.version>
    </properties>

    <!--添加cloudera的repository-->
    <repositories>
        <repository>
            <id>cloudera</id>
            <url>https://repository.cloudera.com/artifactory/cloudera-repos</url>
        </repository>
    </repositories>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>

        <!-- Kafka 依赖-->
        <!--
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka_2.11</artifactId>
            <version>${kafka.version}</version>
        </dependency>
        -->

        <!-- Hadoop 依赖-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>

        <!-- HBase 依赖-->
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-client</artifactId>
            <version>${hbase.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-server</artifactId>
            <version>${hbase.version}</version>
        </dependency>

        <!-- Spark Streaming 依赖-->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>


        <!-- Spark Streaming整合Flume 依赖-->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-flume_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-flume-sink_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.commons</groupId>
            <artifactId>commons-lang3</artifactId>
            <version>3.5</version>
        </dependency>

        <!-- Spark SQL 依赖-->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>


        <dependency>
            <groupId>com.fasterxml.jackson.module</groupId>
            <artifactId>jackson-module-scala_2.11</artifactId>
            <version>2.6.5</version>
        </dependency>

        <dependency>
            <groupId>net.jpountz.lz4</groupId>
            <artifactId>lz4</artifactId>
            <version>1.3.0</version>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.38</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flume.flume-ng-clients</groupId>
            <artifactId>flume-ng-log4jappender</artifactId>
            <version>1.6.0</version>
        </dependency>

    </dependencies>

    <build>
        <!--
        <sourceDirectory>src/main/scala</sourceDirectory>
        <testSourceDirectory>src/test/scala</testSourceDirectory>
        -->
        <plugins>
            <plugin>
                <groupId>org.scala-tools</groupId>
                <artifactId>maven-scala-plugin</artifactId>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
                <configuration>
                    <scalaVersion>${scala.version}</scalaVersion>
                    <args>
                        <arg>-target:jvm-1.5</arg>
                    </args>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-eclipse-plugin</artifactId>
                <configuration>
                    <downloadSources>true</downloadSources>
                    <buildcommands>
                        <buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand>
                    </buildcommands>
                    <additionalProjectnatures>
                        <projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature>
                    </additionalProjectnatures>
                    <classpathContainers>
                        <classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
                        <classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer>
                    </classpathContainers>
                </configuration>
            </plugin>
        </plugins>
    </build>
    <reporting>
        <plugins>
            <plugin>
                <groupId>org.scala-tools</groupId>
                <artifactId>maven-scala-plugin</artifactId>
                <configuration>
                    <scalaVersion>${scala.version}</scalaVersion>
                </configuration>
            </plugin>
        </plugins>
    </reporting>

</project>
package com.lin.spark.streaming.project.spark

import com.lin.spark.streaming.project.dao.{CourseClickCountDAO, CourseSearchClickCountDAO}
import com.lin.spark.streaming.project.domain.{ClickLog, CourseClickCount, CourseSearchClickCount}
import com.lin.spark.streaming.project.utils.DateUtils
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable.ListBuffer

/**
  * Created by Administrator on 2019/6/6.
  */
object StatStreamingApp {
  def main(args: Array[String]): Unit = {

    if (args.length != 4) {
      System.err.println("参数有误!")
      System.exit(1)
    }
    //hadoop:2181 test streamingtopic 2
    val Array(zkQuorum, group, topics, numThreads) = args
    val conf = new SparkConf().setAppName("KafkaUtil").setMaster("local[4]")
    val ssc = new StreamingContext(conf, Seconds(60))

    val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap

    val clickLog = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2)

    val cleanData = clickLog.map(line => {
      val infos = line.split("\t")
      //29.98.156.124   2019-06-06 05:37:01     "GET /class/131.html HTTP/1.1"  500     http://www.baidu.com/s?wd=Storm实战
      //case class ClickLog(ip:String, time:String, courseId:Int, statusCode:Int, referer:String)
      var courseId = 0
      val url = infos(2).split(" ")(1)
      if (url.startsWith("/class")) {
        val urlHTML = url.split("/")(2)
        courseId = urlHTML.substring(0, urlHTML.lastIndexOf(".")).toInt
      }
      ClickLog(infos(0), DateUtils.parseToMinute(infos(1)), courseId, infos(3).toInt, infos(4))
    }).filter(clickLog => clickLog.courseId != 0)

    //存储点击日志
    cleanData.map(log => {
      (log.time.substring(0, 8) + "_" + log.courseId, 1)
    }).reduceByKey(_ + _).foreachRDD(rdd => {
      rdd.foreachPartition(partitionReconrds => {
        val list = new ListBuffer[CourseClickCount]
        partitionReconrds.foreach(pair => {
          list.append(CourseClickCount(pair._1, pair._2))
        })
        CourseClickCountDAO.save(list)
      })
    })

    //存储查询点击日志
    cleanData.map(log => {

      val referer = log.referer.replaceAll("//", "/")
      val splits = referer.split("/")
      var host = ""
      if (splits.length > 2) {
        host = splits(1)
      }
      (host, log.courseId, log.time)
    }).filter(x => {
      x._1 != ""
    }).map(searchLog=>{
      (searchLog._3.substring(0,8) + "_" + searchLog._1 + "_" + searchLog._2 , 1)
    }).reduceByKey(_ + _).foreachRDD(rdd => {
      rdd.foreachPartition(partitionReconrds => {
        val list = new ListBuffer[CourseSearchClickCount]
        partitionReconrds.foreach(pair => {
          list.append(CourseSearchClickCount(pair._1, pair._2))
        })
        CourseSearchClickCountDAO.save(list)
      })
    })

    ssc.start()
    ssc.awaitTermination()
  }
}
package com.lin.spark.streaming.project.utils

import java.util.Date

import org.apache.commons.lang3.time.FastDateFormat

/**
  * Created by Administrator on 2019/6/6.
  */
object DateUtils {

  val YYYYMMDDHHMMSS_FORMAT = FastDateFormat.getInstance("yyyy-MM-dd HH:mm:ss")
  val TARGE_FORMAT = FastDateFormat.getInstance("yyyyMMddHHmmss")

  def getTime(time:String) ={
    YYYYMMDDHHMMSS_FORMAT.parse(time).getTime
  }

  def parseToMinute(time:String)={
    TARGE_FORMAT.format(new Date(getTime(time)))
  }

  def main(args: Array[String]): Unit = {
    println(parseToMinute("2017-10-22 14:46:01"))
  }
}
package com.lin.spark.streaming.project.domain


case class ClickLog(ip:String, time:String, courseId:Int, statusCode:Int, referer:String)
package com.lin.spark.streaming.project.domain

/**
  * Created by Administrator on 2019/6/7.
  */
case class CourseClickCount(day_course:String,click_course:Long)
package com.lin.spark.streaming.project.domain

/**
  * Created by Administrator on 2019/6/7.
  */
case class CourseSearchClickCount(day_search_course:String, click_count:Long)
package com.lin.spark.streaming.project.dao

import com.lin.spark.project.utils.HBaseUtils
import com.lin.spark.streaming.project.domain.CourseClickCount
import org.apache.hadoop.hbase.client.Get
import org.apache.hadoop.hbase.util.Bytes

import scala.collection.mutable.ListBuffer

/**
  * Created by Administrator on 2019/6/7.
  */
object CourseClickCountDAO {

  val tableName = "lin_course_clickcount"
  val cf = "info"
  val qualifer = "click_count"

  def save(list:ListBuffer[CourseClickCount]):Unit={
    val table =HBaseUtils.getInstance().getTable(tableName)
    for (ele <- list){
      table.incrementColumnValue(Bytes.toBytes(ele.day_course),
        Bytes.toBytes(cf),
        Bytes.toBytes(qualifer),
        ele.click_course)
    }
  }

  def count(day_course:String):Long={
    val table = HBaseUtils.getInstance().getTable(tableName)
    val get = new Get(Bytes.toBytes(day_course))
    val value  = table.get(get).getValue(cf.getBytes,qualifer.getBytes)
    if(value == null){
      0L
    }else{
      Bytes.toLong(value)
    }
  }

  def main(args: Array[String]): Unit = {
    val list = new ListBuffer[CourseClickCount]
    list.append(CourseClickCount("20190606",99))
    list.append(CourseClickCount("20190608",89))
    list.append(CourseClickCount("20190609",100))
//    save(list)
    println(count("20190609"))
  }
}
package com.lin.spark.streaming.project.dao

import com.lin.spark.project.utils.HBaseUtils
import com.lin.spark.streaming.project.domain.{CourseClickCount, CourseSearchClickCount}
import org.apache.hadoop.hbase.client.Get
import org.apache.hadoop.hbase.util.Bytes

import scala.collection.mutable.ListBuffer

/**
  * Created by Administrator on 2019/6/7.
  */
object CourseSearchClickCountDAO {

  val tableName = "lin_course_search_clickcount"
  val cf = "info"
  val qualifer = "click_count"

  def save(list:ListBuffer[CourseSearchClickCount]):Unit={
    val table =HBaseUtils.getInstance().getTable(tableName)
    for (ele <- list){
      table.incrementColumnValue(Bytes.toBytes(ele.day_search_course),
        Bytes.toBytes(cf),
        Bytes.toBytes(qualifer),
        ele.click_count)
    }
  }

  def count(day_course:String):Long={
    val table = HBaseUtils.getInstance().getTable(tableName)
    val get = new Get(Bytes.toBytes(day_course))
    val value  = table.get(get).getValue(cf.getBytes,qualifer.getBytes)
    if(value == null){
      0L
    }else{
      Bytes.toLong(value)
    }
  }

  def main(args: Array[String]): Unit = {
    val list = new ListBuffer[CourseSearchClickCount]
    list.append(CourseSearchClickCount("20190606_www.baidu.com_99",99))
    list.append(CourseSearchClickCount("20190608_www.bing.com_89",89))
    list.append(CourseSearchClickCount("20190609_www.csdn.net_100",100))
    save(list)
//    println(count("20190609"))
  }
}