[BZOJ2423][HAOI2010]最长公共子序列

时间:2023-03-08 17:15:14
[BZOJ2423][HAOI2010]最长公共子序列

[BZOJ2423][HAOI2010]最长公共子序列

试题描述

字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij = yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。对给定的两个字符序列,求出他们最长的公共子序列长度,以及最长公共子序列个数。

输入

第1行为第1个字符序列,都是大写字母组成,以”.”结束。长度小于5000。

第2行为第2个字符序列,都是大写字母组成,以”.”结束,长度小于5000。

输出

第1行输出上述两个最长公共子序列的长度。

第2行输出所有可能出现的最长公共子序列个数,答案可能很大,只要将答案对100,000,000求余即可。

输入示例

ABCBDAB.
BACBBD.

输出示例


数据规模及约定

见“输入

题解

第一问是最裸的最长公共子序列dp;第二问须在第一问基础上加一个计数问题,设 f(i, j) 是第一个串到第 i 位,第二个串到第 j 位的最长公共子序列长度,g(i, j) 为 f(i, j) 取最大值时的方案数,那么只要保证上一步转移前也是最优的情况就可以了,注意减去重复的计数。

记得开滚动数组!

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 5010
#define MOD 100000000
char A[maxn], B[maxn], cur;
int f[2][maxn], g[2][maxn]; int main() {
scanf("%s%s", A + 1, B + 1);
int na = strlen(A + 1), nb = strlen(B + 1);
A[na--] = '\0'; B[nb--] = '\0'; for(int i = 1; i <= nb; i++) g[0][i] = 1; g[0][0] = g[1][0] = 1;
for(int i = 1; i <= na; i++) {
cur ^= 1;
for(int j = 1; j <= nb; j++) {
f[cur][j] = max(f[cur^1][j], f[cur][j-1]);
if(A[i] == B[j]) f[cur][j] = max(f[cur][j], f[cur^1][j-1] + 1);
g[cur][j] = 0;
if(f[cur][j] == f[cur^1][j]) g[cur][j] += g[cur^1][j];
if(f[cur][j] == f[cur][j-1]) g[cur][j] += g[cur][j-1];
if(f[cur][j] == f[cur^1][j] && f[cur][j] == f[cur][j-1] && f[cur^1][j-1] == f[cur][j]) g[cur][j] -= g[cur^1][j-1];
if(A[i] == B[j] && f[cur][j] == f[cur^1][j-1] + 1) g[cur][j] += g[cur^1][j-1];
if(g[cur][j] > MOD) g[cur][j] %= MOD;
if(g[cur][j] < 0) g[cur][j] = (g[cur][j] % MOD) + MOD;
// printf("%d %d: %d %d\n", i, j, f[cur][j], g[cur][j]);
}
} printf("%d\n%d\n", f[cur][nb], g[cur][nb]); return 0;
}