HDU 2588 思维 容斥

时间:2024-11-13 16:03:50

求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$。

首先,假定$(x, n)=m$,那么 $(\frac{x}{n},\frac{n}{m})=1$,故$$ans=\sum_{i=m}^{n}\varphi(\frac{n}{i})$$

ん?遅い!

$$\sum_{i=m}^{n}\varphi(\frac{n}{i})=\sum\limits_{d|n}{\varphi(\frac{n}{d})}$$

其实还可以再优化下的吧?

/** @Date    : 2017-09-20 21:55:29
* @FileName: HDU 2588 思维 容斥 或 欧拉函数.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; LL pri[N];
int vis[N];
int c = 0; void prime()
{
MMF(vis);
for(int i = 2; i < N; i++)
{
if(!vis[i]) pri[c++] = i;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
vis[i * pri[j]] = 1;
if(i % pri[j] == 0) break;
}
}
} LL get_phi(LL x)
{
LL ans = x;
for(int i = 0; i < c && pri[i] <= x / pri[i]; i++)
{
if(x % pri[i] == 0)
{
while(x % pri[i] == 0)
x /= pri[i];
ans = ans / pri[i] * (pri[i] - 1);
}
}
if(x > 1)
ans = ans / x * (x - 1);
return ans;
} int main()
{
int T;
cin >> T;
prime();
while(T--)
{
LL n, m;
scanf("%lld%lld", &n, &m);
LL t = n;
LL ans = 0;
for(LL i = 1; i <= t / i; i++)
{
if(t % i == 0)
{
//cout << i << t/i << endl;
if(i >= m)
ans += get_phi(n / i);
if(t / i != i && t / i >= m)
ans += get_phi(n / (t / i));
}
}
printf("%lld\n", ans);
}
return 0;
}