poj 1811 Prime Test 大数素数测试+大数因子分解

时间:2023-03-08 17:16:04
Prime Test
Time Limit: 6000MS   Memory Limit: 65536K
Total Submissions: 27129   Accepted: 6713
Case Time Limit: 4000MS

Description

Given a big integer number, you are required to find out whether it's a prime number.

Input

The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 254).

Output

For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.

Sample Input

2
5
10

Sample Output

Prime
2

Source

 /*
给你一个大数,如果是素数输出prime,如果不是,则输出其最小的质因子。 利用Miller-Rabbin素数测试和Pollar-rho因数分解可以AC这道题 */ #include<iostream>
#include<cstdio>
#include<string.h>
#include<time.h>
#include<algorithm>
using namespace std; typedef __int64 LL;
//****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=;//随机算法判定次数,S越大,判错概率越小 LL mult_mod(LL a,LL b,LL mod) //(a*b)%c a,b,c<2^63
{
a%=mod;
b%=mod;
LL ans=;
while(b)
{
if(b&)
{
ans=ans+a;
if(ans>=mod)
ans=ans-mod;
}
a=a<<;
if(a>=mod) a=a-mod;
b=b>>;
}
return ans;
} LL pow_mod(LL a,LL b,LL mod) // a^b%mod
{
LL ans=;
a=a%mod;
while(b)
{
if(b&)
{
ans=mult_mod(ans,a,mod);
}
a=mult_mod(a,a,mod);
b=b>>;
}
return ans;
} //以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false bool check(LL a,LL n,LL x,LL t)
{
LL ret=pow_mod(a,x,n);
LL last=ret;
for(int i=;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret== && last!= && last!=n-) return true;//合数
last=ret;
}
if(ret!=) return true;
else return false;
} // Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false; bool Miller_Rabin(long long n)
{
if(n<)return false;
if(n==) return true;
if( (n&)==) return false;//偶数
LL x=n-;
LL t=;
while( (x&)== ) { x>>=;t++;}
for(int i=;i<S;i++)
{
LL a=rand()%(n-)+;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
} //************************************************
//pollard_rho 算法进行质因数分解
//************************************************ LL factor[];//质因数分解结果(刚返回时是无序的)
int tol;////质因数的个数。数组小标从0开始 LL gcd(LL a,LL b)
{
if(a==) return ;// !!!!
if(a<) return gcd(-a,b);
while(b)
{
LL t=a%b;
a=b;
b=t;
}
return a;
} LL Pollard_rho(LL x,LL c)
{
LL i=,k=;
LL x0=rand()%x;
LL y=x0;
while()
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
LL d=gcd(y-x0,x);
if(d!= && d!=x) return d;
if(y==x0) return x;
if(i==k) {y=x0;k+=k;}
}
} //对n进行素因子分解 void findfac(LL n)
{
if(Miller_Rabin(n))
{
factor[tol++]=n;
return;
}
LL p=n;
while(p>=n)
p=Pollard_rho(p,rand()%(n-)+);
findfac(p);
findfac(n/p);
} int main()
{
// srand(time(NULL));//需要time.h头文件 //POJ上G++要去掉这句话
int T;
LL n;
scanf("%d",&T);
while(T--)
{
scanf("%I64d",&n);
if(Miller_Rabin(n))
{
printf("Prime\n");
continue;
}
tol=;
findfac(n);// 对n的素数分解
LL ans=factor[];
for(int i=;i<tol;i++)
if(factor[i]<ans)
ans=factor[i];
printf("%I64d\n",ans); for(int i=;i<tol;i++)
printf("%I64d ",factor[i]);
printf("\n");
}
return ;
}