有以无限间隔$D$的水平线分割的平面,在上面随机投下一个圆,圆中有一些点,点之间两两成一条线段,问随机投下至少有一条线段于平行线相交的概率。
以下是不严(luan)谨(lai)的思路。
首先都知道对于任意长度$L$的线段随机投放在无数间隔为$D$的平面,其有相交情况的概率为$\frac{2L}{D\pi}$(浦丰投针)
首先考虑线段是垂直平行线的不会发生旋转(固定角度)其随机投放在平面上有交点的概率为$\frac{L}{D}$,
但是实际情况是线段会旋转,其对应在垂直平行线上的投影长度的期望为$\frac{2L}{\pi}$,重新代入到$L$就是上面那个概率公式,
现在由于圆内点两两间都有线段,要考虑圆内为一个整体,不妨直接拿多边形的边(因为其他线段的投影都在其投影内)来计算它们的投影长度的期望,得到的结果其实也就是点集凸包的周长除以$\pi$
然后代入:$\frac{c}{D\pi}$ ,会发现是个水题
/** @Date : 2017-09-24 22:35:19
* @FileName: HDU 4978 凸包 计算.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
const double Pi = acos(-1.0);
struct point
{
double x, y;
point(){}
point(double _x, double _y){x = _x, y = _y;}
point operator -(const point &b) const
{
return point(x - b.x, y - b.y);
}
double operator *(const point &b) const
{
return x * b.x + y * b.y;
}
double operator ^(const point &b) const
{
return x * b.y - y * b.x;
}
}; double xmult(point p1, point p2, point p0)
{
return (p1 - p0) ^ (p2 - p0);
} double distc(point a, point b)
{
return sqrt((double)((b - a) * (b - a)));
}
int sign(double x)
{
if(fabs(x) < eps)
return 0;
if(x < 0)
return -1;
else
return 1;
} ////////
int n;
point stk[N];
point p[N]; int cmpC(point a, point b)//水平序排序
{
return sign(a.x - b.x) < 0 || (sign(a.x - b.x) == 0 && sign(a.y - b.y) < 0);
} int Graham(point *p, int n)//水平序
{
sort(p, p + n, cmpC);
int top = 0;
for(int i = 0; i < n; i++)
{
while(top >= 2 && sign(xmult(stk[top - 2], stk[top - 1], p[i])) < 0)
top--;
stk[top++] = p[i];
}
int tmp = top;
for(int i = n - 2; i >= 0; i--)
{
while(top > tmp && sign(xmult(stk[top - 2],stk[top - 1] ,p[i] )) < 0)
top--;
stk[top++] = p[i];
}
if(n > 1)
top--;
return top;
} int main()
{
int T;
cin >> T;
int c = 0;
while(T--)
{
int n;
double d;
cin >> n >> d;
double x, y;
for(int i = 0; i < n; i++)
{
scanf("%lf%lf", &x, &y);
p[i] = point(x, y);
}
int m = Graham(p, n);
double ans = 0.0;
stk[m++] = stk[0];//注意只有直线的情况
for(int i = 0; i < m - 1; i++)
ans += distc(stk[i], stk[i + 1]);
printf("Case #%d: %.4lf\n", ++c, ans / d / Pi);
}
return 0;
}