https://www.lydsy.com/JudgeOnline/problem.php?id=1009
阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(<=Xi<=),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(<=Ai<=)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
题意
KMP我会,矩乘dp我也会,组合起来原本应该是双倍的快乐,为什么会这样(>﹏<)
看起来很像是一道AC自动机(KMP)的题目,N,M的数据范围很像快速矩阵幂,这就触及到我的知识盲区了
事实上确实如此,我们考虑一个最裸的线性dp
dp[i][j]表示这个串的前i位匹配到前j个字符的种数
对于每一位的递推事实上可以通过枚举0到9找到之后的最大匹配,从前面开始递推出答案。
找到最大匹配可以用kmp的next数组加速一下。
递推可以通过矩阵加速一下。由于只有最后M位数才会对下一位产生递推关系,所以我们只要建一个M * M的矩阵加速即可
#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
inline int read(){int now=;register char c=getchar();for(;!isdigit(c);c=getchar());
for(;isdigit(c);now=now*+c-'',c=getchar());return now;}
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int INF = 0x3f3f3f3f;
int mod = 1e9 + ;
int N,M,K;
char str[maxn];
struct Mat{
LL a[][];
void init(){
Mem(a,);
}
}base,ans;
Mat operator * (Mat a,Mat b){
Mat ans; ans.init();
for(int i = ; i < M ; i ++){
for(int j = ;j < M; j ++){
for(int k = ; k < M ; k ++){
ans.a[i][j] = (ans.a[i][j] + a.a[i][k] * b.a[k][j]) % mod;
}
}
}
return ans;
}
Mat operator ^ (Mat a,int n){
Mat ans; ans.init();
for(int i = ; i < M ; i ++) ans.a[i][i] = ;
while(n){
if(n & ) ans = ans * a;
a = a * a;
n >>= ;
}
return ans;
}
int nxt[maxn];
void KMP_Pre(char x[],int m,int *next){
int i,j;
j = next[] = -;
i = ;
while(i < m){
while(j != - && x[i] != x[j]) j = next[j];
next[++i] = ++j;
}
}
int main()
{
Sca3(N,M,mod); ans.init();
scanf("%s",str); base.init();
KMP_Pre(str,strlen(str),nxt);
for(int i = ; i < M; i ++){
for(int j = '' ; j <= '' ; j ++){
int k = i;
while(str[k] != j && k) k = nxt[k];
if(str[k] == j) k ++;
base.a[i][k]++;
}
}
LL sum = ;
ans.a[][] = ;
ans = ans * (base ^ N);
for(int i = ; i < M ; i ++) sum = (sum + ans.a[][i]) % mod;
Prl(sum);
#ifdef VSCode
system("pause");
#endif
return ;
}