bzoj 2693: jzptab 线性筛积性函数

时间:2023-03-08 17:12:41

2693: jzptab

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 444  Solved: 174
[Submit][Status][Discuss]

Description

Input

一个正整数T表示数据组数

接下来T行 每行两个正整数 表示N、M

Output

T行 每行一个整数 表示第i组数据的结果

Sample Input

1

4 5

Sample Output

122

HINT
T <= 10000

N, M<=10000000

  重新学习了一下积性函数方式推导莫比乌斯反演系列题目,感觉求sigma(gcd(x,y))、sigma(gcd(x,y)==1)用积性函数的性质推导应该还算是简单,但是求sigma(lcm(x,y))用积性函数就非常恶心了,具体推法详见jzp讲稿:

 传送门:http://wenku.baidu.com/link?url=_glgC9AsqkzOGXSe66vrbLWwf9mr_HZujxaAszME0pCbVtRdcTyhqODy801-tgQdoArjJYYwQGwpQ7E4mdA61OsRYO3qciEfusRQ51JPUCy

  这道题是bzoj 2154《 Crash的数字表格》的多组询问版,如果我没记错的话,那道题我用的是O(n)求sigma(lcm(x,y)),但是jzp讲的神奇的方法可以O(n)预处理,O(sqrt(n))询问。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define MAXP 10010000
#define MAXN 10010000
#define MOD 100000009
typedef long long qword;
bool pflag[MAXP];
int prime[MAXP],topp=-;
int phi[MAXP];
int gg[MAXP];
qword gs[MAXP];
int mu[MAXP];
void init()
{
phi[]=;
gg[]=;
mu[]=;
for (int i=;i<MAXP;i++)
{
if (!pflag[i])
{
prime[++topp]=i;
phi[i]=i-;
gg[i]=-i;
mu[i]=-;
}
for (int j=;j<=topp && i*prime[j]<MAXP;j++)
{
pflag[i*prime[j]]=true;
if (i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
gg[i*prime[j]]=gg[i];
mu[i*prime[j]]=;
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-);
gg[i*prime[j]]=gg[i]*(-prime[j]);
mu[i*prime[j]]=-mu[i];
}
}
for (int i=;i<MAXP;i++)
gs[i]=(gs[i-]+(qword)gg[i]*i)%MOD;
return ;
}
qword solve(int n,int m)
{
qword res=;
int l=;
for (int i=;i<=min(n,m);i=l)
{
l=min(n/(n/i),m/(m/i))+;
res=(res+((qword)(n/i)*(n/i+)/%MOD)%MOD*((qword)(m/i)*(m/i+)/%MOD)%MOD*(gs[l-]-gs[i-])%MOD)%MOD;
}
res=(res+MOD)%MOD;
return res;
} int main()
{
freopen("input.txt","r",stdin);
int n,m;
int nn;
init();
scanf("%d",&nn);
while (nn--)
{
scanf("%d%d",&n,&m);
printf("%lld\n",solve(n,m));
}
}