铭文一级:
linux crontab
网站:http://tool.lu/crontab
每一分钟执行一次的crontab表达式: */1 * * * *
crontab -e
*/1 * * * * /home/hadoop/data/project/log_generator.sh
对接python日志产生器输出的日志到Flume
streaming_project.conf
选型:access.log ==> 控制台输出
exec
memory
logger
exec-memory-logger.sources = exec-source
exec-memory-logger.sinks = logger-sink
exec-memory-logger.channels = memory-channel
exec-memory-logger.sources.exec-source.type = exec
exec-memory-logger.sources.exec-source.command = tail -F /home/hadoop/data/project/logs/access.log
exec-memory-logger.sources.exec-source.shell = /bin/sh -c
exec-memory-logger.channels.memory-channel.type = memory
exec-memory-logger.sinks.logger-sink.type = logger
exec-memory-logger.sources.exec-source.channels = memory-channel
exec-memory-logger.sinks.logger-sink.channel = memory-channel
flume-ng agent \
--name exec-memory-logger \
--conf $FLUME_HOME/conf \
--conf-file /home/hadoop/data/project/streaming_project.conf \
-Dflume.root.logger=INFO,console
日志==>Flume==>Kafka
启动zk:./zkServer.sh start
启动Kafka Server:kafka-server-start.sh -daemon /home/hadoop/app/kafka_2.11-0.9.0.0/config/server.properties
修改Flume配置文件使得flume sink数据到Kafka
streaming_project2.conf
exec-memory-kafka.sources = exec-source
exec-memory-kafka.sinks = kafka-sink
exec-memory-kafka.channels = memory-channel
exec-memory-kafka.sources.exec-source.type = exec
exec-memory-kafka.sources.exec-source.command = tail -F /home/hadoop/data/project/logs/access.log
exec-memory-kafka.sources.exec-source.shell = /bin/sh -c
exec-memory-kafka.channels.memory-channel.type = memory
exec-memory-kafka.sinks.kafka-sink.type = org.apache.flume.sink.kafka.KafkaSink
exec-memory-kafka.sinks.kafka-sink.brokerList = hadoop000:9092
exec-memory-kafka.sinks.kafka-sink.topic = streamingtopic
exec-memory-kafka.sinks.kafka-sink.batchSize = 5
exec-memory-kafka.sinks.kafka-sink.requiredAcks = 1
exec-memory-kafka.sources.exec-source.channels = memory-channel
exec-memory-kafka.sinks.kafka-sink.channel = memory-channel
flume-ng agent \
--name exec-memory-kafka \
--conf $FLUME_HOME/conf \
--conf-file /home/hadoop/data/project/streaming_project2.conf \
-Dflume.root.logger=INFO,console
kafka-console-consumer.sh --zookeeper hadoop000:2181 --topic streamingtopic
数据清洗操作:从原始日志中取出我们所需要的字段信息就可以了
数据清洗结果类似如下:
ClickLog(46.30.10.167,20171022151701,128,200,-)
ClickLog(143.132.168.72,20171022151701,131,404,-)
ClickLog(10.55.168.87,20171022151701,131,500,-)
ClickLog(10.124.168.29,20171022151701,128,404,-)
ClickLog(98.30.87.143,20171022151701,131,404,-)
ClickLog(55.10.29.132,20171022151701,146,404,http://www.baidu.com/s?wd=Storm实战)
ClickLog(10.87.55.30,20171022151701,130,200,http://www.baidu.com/s?wd=Hadoop基础)
ClickLog(156.98.29.30,20171022151701,146,500,https://www.sogou.com/web?query=大数据面试)
ClickLog(10.72.87.124,20171022151801,146,500,-)
ClickLog(72.124.167.156,20171022151801,112,404,-)
到数据清洗完为止,日志中只包含了实战课程的日志
补充一点:希望你们的机器配置被太低
Hadoop/ZK/HBase/Spark Streaming/Flume/Kafka
hadoop000: 8Core 8G
铭文二级:
定时调度工具的使用(https://tool.lu/crontab):
linux crontab 定时
指令为:crontab -e
然后在里面编辑:*/1 * * * * //“1”代表1分钟
vi log_generator.sh //把执行脚本放进去:python /home/hadoop/data/project/generate_log.py
验证日志能否输出,在终端二的project文件目录下执行: tail -200f logs/access.log
执行log_generator.sh脚本后可看到终端二也有数据产生
chmod u+x log_generator.sh //添加执行权限
使用Flume实时收集日志信息:
streaming_project.conf(exec-memory-logger):先输出到控制台测试一下
exec source:
type:exec
command:tail -F /路径/
shell:/bin/sh -c
使用Flume整合到Kafka:
streaming_project2.conf(exec-memory-kafka):
type:org.apache.flume.sink.kafka.KafkaSink
brokerList、topic、requiredAck、batchSize
启动zk、启动kafka、终端上确认kafka能消费生产者的东西
建project:spark与utils文件夹
ImoocStatStreamingApp
KafkaUtils.createStreaming(ssc,zkQuorm,groupId,topicMap)
代码程确认kafka能消费生产者的东西
ClickLog类的建立(类似java里面的javabean):
/**
* 清洗后的日志信息
* @param ip 日志访问的ip地址
* @param time 日志访问的时间
* @param courseId 日志访问的实战课程编号
* @param statusCode 日志访问的状态码
* @param referer 日志访问的referer
*/
case class ClickLog(ip:String, time:String, courseId:Int, statusCode:Int, referer:String)
Flume执行脚本后面加一行(巩固一下):
-Dflume.root.logger = INFO,console
时间转换类的开发:
/**
* 日期时间工具类
*/
object DateUtils {
val YYYYMMDDHHMMSS_FORMAT = FastDateFormat.getInstance("yyyy-MM-dd HH:mm:ss")
val TARGE_FORMAT = FastDateFormat.getInstance("yyyyMMddHHmmss")
def getTime(time: String) = {
YYYYMMDDHHMMSS_FORMAT.parse(time).getTime
}
def parseToMinute(time :String) = {
TARGE_FORMAT.format(new Date(getTime(time)))
}
def main(args: Array[String]): Unit = {
println(parseToMinute("2017-10-22 14:46:01"))
}
}
时间转换的思路【new Date(Long类型的毫秒数)可转化】:
一、先得到 1.原本时间的类型 2.想要得到的时间类型
二、将原本的时间类型parse解析成Long类型的毫秒数,再将想得到的类型format得到的Date即可
铭文三级:
日志转换FastDateFormat替代simpleDateFormat解决线程不安全问题(要引入commons-lang依赖):
private String initDate() {
Date d = new Date();
FastDateFormat fdf = FastDateFormat.getInstance("yyyy-MM-dd HH:mm:ss");
return fdf.format(d);
}
查看文件内容的特殊方法:
相信最基本的cat和less,more你已经很熟悉了,如果有特殊的要求呢:
1. 如果你只想看文件的前5行,可以使用head命令,如:
head -5 /etc/passwd
2. 如果你想查看文件的后10行,可以使用tail命令,如:
tail -10 /etc/passwd
tail -f /var/log/messages
参数-f使tail不停地去读最新的内容,这样有实时监视的效果
map(_._2) 等价于 map(t => t._2) //t是个2项以上的元组
map(_._2, _) 等价与 map(t => t._2, t) //这会返回第二项为首后面项为旧元组的新元组