Codeforces 603E Pastoral Oddities

时间:2024-11-09 10:05:44

传送门:http://codeforces.com/problemset/problem/603/E

【题目大意】

给出$n$个点,$m$个操作,每个操作加入一条$(u, v)$长度为$l$的边。

对于每次操作后,求出一个边集,使得每个点度数均为奇数,且边集的最大边最小。

$n \leq 10^5, m \leq 3 * 10^5$

【题解】

有结论:满足条件(每个点度数均为奇数),当且仅当每个连通块大小都是偶数(容易证明,从下往上,调整法)。

那么显然可以LCT维护连通性,连通块大小以及最大边位置,每次拉出最大边,加入即可。做法有点像水管局长那题。

复杂度$O((n+m)log(n+m))$,常数大……LCT太不优美了!!!

考虑一种优美的做法:

这个类似于动态维护生成树(生成森林),那么是否可以分治?

答案是可以的。一开始我们往整体二分的方向想,发现没有办法支持并查集的撤销,然后就gg了。实际上这道题有一个非常优美的分治做法!

【手动分割】

容易发现把-1看成inf,那么答案是不增的。

定义$solve(l, r, lo, hi)$表示目前处理的操作区间为$[l, r]$,答案区间为$[lo, hi]$。

那么考虑求出$mid = (l+r)/2$的时候的答案$ans[mid]$。

那么我们是不是可以根据$mid$和$ans[mid]$,划分成$solve(l, mid-1, ans[mid], hi)$和$solve(mid+1, r, lo, ans[mid])$来分治!!!

想到这里了,问题在于怎样求出$ans[mid]$以及划分区间需要进行的并查集操作。

这里的并查集容易发现,要使用按秩合并,不能路径压缩,因为要支持撤销。(支持撤销的并查集套路有很多,比如bzoj连通图、二分图那几题)

考虑求$ans[mid]$,我们画一张图,横坐标代表询问id,纵坐标代表length。

Codeforces 603E  Pastoral Oddities

(字母要用光了QAQ)

我们目标是求出ans[mid]的这条线从而划分成BFQG和DEQH来分治,目前的区域为ABCD。

因为我们要求mid的答案,相当于求Q点的坐标。所以$[l,mid-1]$的边相当于已经加了。

考虑矩形DHYX,表示$[l, mid-1]$的边,权值范围小于$lo$,容易发现这个对于我们统计$mid$的答案是必须加入的,加入即可。

接下来按从小到大的顺序依次加入每一条权值在$[lo, hi]$的边,然后实时记录是否满足条件了,如果满足,那么我们就能求出$ans[mid]$。

求完$ans[mid]$要撤销并查集操作哦~

那么这步就做完了,下面就有两个问题了。

1. 找不到$ans[mid]$,那么说明$[l, mid]$都没有解,就能把DHYX的所有边加入并查集中了,然后递归寻找$solve(mid+1, r, lo, hi)$即可,记得撤销操作。

2. 找到了$ans[mid]$:

这个就非常兹磁了对吧,我们就可以分成两块做了。

考虑如果递归到$solve(mid+1, r, lo, ans[mid])$,那么同样的,DHYX的所有边也可以被加入并查集中了。

考虑如果递归到$solve(l, mid-1, ans[mid], hi)$,那么,STDE中的所有边也可以被加入并查集中了。

那么维护这个东西就行了。

容易发现,每条边最多被加入$O(logm)$次,每次复杂度为$O(logn)$,所以复杂度为$O(mlogmlogn)$,由于常数小,实测跑的飞快。

【手动分割-2】

真的跑的飞快吗?

第一次测:TLE on test 83(代码见下)

# include <vector>
# include <stdio.h>
# include <string.h>
# include <iostream>
# include <algorithm>
// # include <bits/stdc++.h> using namespace std; typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
const int M = 3e5 + , N = 1e5 + ;
const int mod = 1e9+; int n, m, mx; struct op {
int a, b, l, sl;
}q[M]; vector<int> v[M], ps; struct us {
struct backup {
int x, y, del;
} st[N]; int stn;
int fa[N], sz[N], cnt_odd;
inline void set(int n) {
cnt_odd = n; stn = ;
for (int i=; i<=n; ++i) fa[i] = i, sz[i] = ;
}
inline int getf(int x) {
return fa[x] == x ? x : getf(fa[x]);
}
inline void un(int x, int y) {
x = getf(x), y = getf(y);
if(x == y) return ;
if(sz[x] < sz[y]) swap(x, y);
++stn;
if((sz[x] & ) && (sz[y] & )) cnt_odd -= , st[stn].del = ;
else st[stn].del = ;
st[stn].x = x, st[stn].y = y;
sz[x] += sz[y]; fa[y] = x;
}
inline void re() {
backup s = st[stn--];
cnt_odd += s.del;
sz[s.x] -= sz[s.y]; fa[s.y] = s.y;
}
inline bool check() {
return cnt_odd == ;
}
}S; int ans[M]; inline void solve(int l, int r, int lo, int hi) {
if(l > r) return ;
// now doing intervals [l, r], the answer is in [lo, hi]
// find the answer of mid = (l+r)/2
int mid = l+r>>, ans_mid = -, lst = S.stn;
// add in edges that in interval [l, mid], and satisfy length < lo
for (int i=l; i<=mid; ++i)
if(q[i].sl < lo) S.un(q[i].a, q[i].b);
// add in edges from [lo] to [hi], and find the answer of mid
for (int i=lo; i<=hi; ++i) {
for (int j=; j<v[i].size(); ++j)
if(v[i][j] <= mid) S.un(q[v[i][j]].a, q[v[i][j]].b);
// if satisfy the condition
if(S.check()) { ans_mid = i; break; }
}
while(S.stn > lst) S.re();
if(ans_mid == -) {
// cannot find the answer of mid
for (int i=l; i<=mid; ++i) ans[i] = -;
// add in edges that in interval [l, mid], and satisfy length < lo
for (int i=l; i<=mid; ++i)
if(q[i].sl < lo) S.un(q[i].a, q[i].b);
solve(mid+, r, lo, hi);
while(S.stn > lst) S.re();
return ;
}
// set the answer of mid to ans_mid
// so to interval [l, mid], the answer is [ans_mid, hi];
// to interval [mid+1, r], the answer is [lo, ans_mid].
ans[mid] = ans_mid;
// for the right side [mid+1, r], we can add in edges that in [l, mid], and satisfy length < lo.
for (int i=l; i<=mid; ++i)
if(q[i].sl < lo) S.un(q[i].a, q[i].b);
solve(mid+, r, lo, ans_mid);
while(S.stn > lst) S.re();
// for the left side [l, mid], we can add in edges that satisfy length < ans_mid, and in [1, l)
for (int i=lo; i<ans_mid; ++i)
for (int j=; j<v[i].size(); ++j)
if(v[i][j] < l) S.un(q[v[i][j]].a, q[v[i][j]].b);
solve(l, mid-, ans_mid, hi);
while(S.stn > lst) S.re();
} int main() {
cin >> n >> m; S.set(n);
if(n & ) {
while(m --) puts("-1");
return ;
}
for (int i=; i<=m; ++i) {
scanf("%d%d%d", &q[i].a, &q[i].b, &q[i].l);
ps.push_back(q[i].l);
}
sort(ps.begin(), ps.end());
ps.erase(unique(ps.begin(), ps.end()), ps.end()); for (int i=; i<=m; ++i) {
q[i].sl = lower_bound(ps.begin(), ps.end(), q[i].l) - ps.begin() + ;
v[q[i].sl].push_back(i);
} solve(, m, , ps.size()); for (int i=; i<=m; ++i) {
if(ans[i] == -) puts("-1");
else printf("%d\n", ps[ans[i]-]);
}
return ;
}

感受了下原因,这是一个$n = 8, m = 2.6 * 10^5$的非常稠密图。我之前的写法是离散,用vector维护每种值有多少,然后会出现的问题是$ans[mid]$可能很长时间不动,那么访问$ans[mid]$里所有的值是近似$O(m)$复杂度,所以肯定爆炸了啊!

有两种解决方法,一种加入id,表示是$ans[mid]$中的第$id$个节点达到答案;一种是用排序后的边的下标来替代值,那么$lo$和$hi$就变成了边的下标。

我设排序前数组为q,排序后为p。

然后我还傻逼WA了一次,因为我直接把q[i].l和p[lo].l比大小,小于就加入,如果有q[i].l=p[lo].l,就很难分清楚要不要加入了,这个的解决办法是对于q加入一个id表示在p中的位置,那么就兹磁比大小了。

现在跑的飞快了!

Codeforces 603E  Pastoral Oddities

# include <stdio.h>
# include <string.h>
# include <iostream>
# include <algorithm>
// # include <bits/stdc++.h> using namespace std; typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
const int M = 3e5 + , N = 1e5 + ;
const int mod = 1e9+; int n, m; struct op {
int a, b, l, id;
friend bool operator < (op a, op b) {
return a.l < b.l;
}
}q[M], p[M]; struct us {
struct backup {
int x, y, del;
} st[N]; int stn;
int fa[N], sz[N], cnt_odd;
inline void set(int n) {
cnt_odd = n; stn = ;
for (int i=; i<=n; ++i) fa[i] = i, sz[i] = ;
}
inline int getf(int x) {
return fa[x] == x ? x : getf(fa[x]);
}
inline void un(int x, int y) {
x = getf(x), y = getf(y);
if(x == y) return ;
if(sz[x] < sz[y]) swap(x, y);
++stn;
if((sz[x] & ) && (sz[y] & )) cnt_odd -= , st[stn].del = ;
else st[stn].del = ;
st[stn].x = x, st[stn].y = y;
sz[x] += sz[y]; fa[y] = x;
}
inline void re() {
backup s = st[stn--];
cnt_odd += s.del;
sz[s.x] -= sz[s.y]; fa[s.y] = s.y;
}
inline bool check() {
return cnt_odd == ;
}
}S; int ans[M]; inline void solve(int l, int r, int lo, int hi) {
if(l > r) return ;
// CAUTION!!! [lo, hi] cannot be real number, it must be the index of the array!!!
// now doing intervals [l, r], the answer is in [lo, hi]
// find the answer of mid = (l+r)/2
int mid = l+r>>, ans_mid = -, lst = S.stn;
// add in edges that in interval [l, mid], and satisfy length < lo (that is, number < lo
for (int i=l; i<=mid; ++i)
if(q[i].id < lo) S.un(q[i].a, q[i].b);
// add in edges from [lo] to [hi], and find the answer of mid
for (int i=lo; i<=hi; ++i) {
if(p[i].id <= mid) S.un(p[i].a, p[i].b);
// if satisfy the condition
if(S.check()) { ans_mid = i; break; }
}
while(S.stn > lst) S.re();
if(ans_mid == -) {
// cannot find the answer of mid
for (int i=l; i<=mid; ++i) ans[i] = -;
// add in edges that in interval [l, mid], and satisfy length < lo
for (int i=l; i<=mid; ++i)
if(q[i].id < lo) S.un(q[i].a, q[i].b);
solve(mid+, r, lo, hi);
while(S.stn > lst) S.re();
return ;
}
// set the answer of mid to ans_mid
// so to interval [l, mid], the answer is [ans_mid, hi];
// to interval [mid+1, r], the answer is [lo, ans_mid].
ans[mid] = p[ans_mid].l;
// for the right side [mid+1, r], we can add in edges that in [l, mid], and satisfy length < lo.
for (int i=l; i<=mid; ++i)
if(q[i].id < lo) S.un(q[i].a, q[i].b);
solve(mid+, r, lo, ans_mid);
while(S.stn > lst) S.re();
// for the left side [l, mid], we can add in edges that satisfy length < ans_mid, and in [1, l)
for (int i=lo; i<ans_mid; ++i)
if(p[i].id < l) S.un(p[i].a, p[i].b);
solve(l, mid-, ans_mid, hi);
while(S.stn > lst) S.re();
} int main() {
cin >> n >> m; S.set(n);
if(n & ) {
while(m --) puts("-1");
return ;
}
for (int i=; i<=m; ++i) {
scanf("%d%d%d", &q[i].a, &q[i].b, &q[i].l);
p[i] = q[i]; p[i].id = i;
} sort(p+, p+m+); for (int i=; i<=m; ++i) q[p[i].id].id = i; solve(, m, , m); for (int i=; i<=m; ++i) printf("%d\n", ans[i]); return ;
}