MongoDB集群之分片技术应用 —— 学习笔记

时间:2024-11-08 19:36:02

课程链接:https://www.imooc.com/learn/501

一、什么是分片?

分片:将数据进行2拆分,将数据水平的分散到不同的服务器上。

MongoDB集群之分片技术应用 —— 学习笔记

二、为什么要分片?

  • 架构上:读写均衡、去中心化
  • 结构上:12节点(version<=2.6)
  • 硬件上:内存、硬盘容量限制

分片目的

改善单台机器数据的存储及数据吞吐性能。

提高在大量数据下随机访问性能。

分片(Shard)、副本集(Replication)集群对比

MongoDB集群之分片技术应用 —— 学习笔记

成员节点介绍

  • Shard节点:存储数据的节点(单个mongod或者副本集)
  • Config server:存储元数据,为mongos服务,将数据路由到Shard。
  • Mongos:接受前端请求,进行对应消息路由。

成员组合图:

MongoDB集群之分片技术应用 —— 学习笔记

成员节点启动参数

Shard节点:

  • mongod --shardsvr
  • mongod --shardsvr --rpelSet 副本集

Config server:

  • mongod --configsvr

Mongos:

  • mongos —— configdb <configdb server>

课程使用系统:Red Hat Enterprise Linux Server release 6.4 (Santiago)

课程使用MongoDB版本:v3.0.4

启动Shard(10.156.11.233):

mongod --shardsvr --logpath=/opt/data/logs/shard.log -logappend --dbpath=/opt/mdb/ --fork --port 27017

查看mongod Shard有没有启动起来:

ps -aux | grep mongod
netstat -luntp | grep 27017

启动Config(10.156.11.233):

mongod --configsvr --logpath=/opt/data/logs/config.log --logappend --dbpath=/opt/config --fork --port 27018

查看mongod Config有没有启动起来:

netstat -luntp | grep mongo
ps -aux | grep mongod

启动Mongos(10.156.11.232):

mongos --port 27017 --logappend --logpath=/opt/data/logs/mongos.log --configdb 10.156.11.233:27018 --fork

查看Mongos有没有启动起来:

netstat -luntp | grep 27017
ps -aux | grep mongos

添加分片过程

步骤一、连接到mongos

步骤二、Add Shards

步骤三、Enable Sharding

步骤四、对一个集合进行分片

步骤二、Add Shards

  1. 单个数据库实例:

    { addShard: "<hostname> <:port>", maxSize: <size>, name: "<shard_name>"}
  2. 副本集群:

    { addShard: "<replica_set>/<hostname> <:port>", maxSize:<size>, name: "shard_name" }
  3. 如果你的mongos和shard在同一台机器上,添加分片不能使用“localhost”,建议使用IP。

步骤四、对一个集合进行分片

  1. db.runCommand

    ({shardcollection: " <namespoace>", key: " <key>"})
  2. unique: " true/false"

    启动对shard key的唯一性约束
  3. shard key选择

在10.156.11.232上的操作

这台电脑之前已经启动了mongos服务

输入如下指令登陆mongos:

mongo 127.0.0.1:27017

在mongos命令行下执行如下命令,将10.156.11.232上的mongod添加进来:

mongos> use admin
mongos> db.runCommand({"addShards":"10.156.11.233:27017"})

其他:

查看目前有几个数据库的mongos命令:

mongos> show dbs;

创建名为“shardtest”的数据库的mongos命令:

mongos> use shardtest

测试在数据库shardtest中的集合userid中插入测试数据的例子:

mongos> for(i=0;i<10000;i++){db.shardtest.userid.insert({"user_id":i})};

采用如下命令来Enable刚才创建的名为“shardtest”的Sharding:

mongos> use admin
mongos> db.runCommand({enablesharding:"shardtest"})

不过这个时候它会报一个这样的错误:

{ "ok": 0, "errmsg": "already enabled" }

使用如下命令启用shardtest数据库的userid集合对应的分片,将根据键user_id来进行分片:

mongos> db.runCommand({"shardcollection":"shardtest.userid",key:{"user_id":1}})

其中,"user_id"对应的1表示是按照升序来进行分片。

分片测试

在mongos命令行执行如下命令:

mongos> use config
mongos> db.shards.find()
  1. 查看集合状态:
> use shardtest
> db.userid.stats()
  1. 查看分片状态:
db.printShardingStatus()
  1. 写入数据测试:
for (var i=1;i<10000000;i++>){db.userid.insert(user_id:i)}

什么是分片片键:

集合里面选一个键,用该键的值作为数据拆分的依据。

MongoDB集群之分片技术应用 —— 学习笔记

什么是Chunk:

MongoDB分片后,存储数据的但愿快,默认大小:64MB。

Chunk拆分

数据块(chunk)的拆分:

记录每个块中插入多少数据,一旦达到某个阈值,执行检查是否需要拆分块,需要则更新config服务器上这个块的元信息。

Balancing

数据块平衡:

均衡器负责数据的迁移,会周期性的检查分片是否存在不均衡,如果存在则会进行块的迁移。

注意:均衡器进行均衡的条件是 块数量的多少 ,而不是块大小。

哈希分片

哈辛分片(hash key):

分片过程中利用哈希索引作为分片的单个键。

  • 哈希分片的片键只能使用一个字段
  • 哈希片键最大的好处就是保证数据在各个节点分布基本均匀

    shardcollection ==> {userid:"hashed"}

233上进行如下操作来进行分片:

mongos> db.userid_hash.insert({userid:11})
mongos> db.userid_hash.insert({userid:22})
mongos> use shardtest
mongos> db.userid_hash.ensureIndex({userid:"hash"})
mongos> use admin
mongos> db.runCommand({"shardcollection":"shardtest.userid_hash","key":{userid:"hashed"}})

插入一些数据进行测试:

mongos> use shardtest
mongos> for(i=0;i<100000;i++>{db.userid_hash.insert({userid:i})})

查看效果:

mongos> use shardtest
mongos> db.userid_hash.stats()
mongos> db.printShardingStatus()

如何选择合适片键

选择片键的好坏很大程度上影响集群的性能,容量和功能。

考虑因素一、数据块的大小

印象:片键相同导致数据块不拆分,容易形成大的数据块,导致数据不均。

考虑因素二、数据写均匀分布

影响:单调递增的_id或时间戳作为片键,这样将会导致你一直往最后一个副本集中添加数据。

请求查询机制

方式一、Routed Request

MongoDB集群之分片技术应用 —— 学习笔记

方式二、Scatter Gather Request

MongoDB集群之分片技术应用 —— 学习笔记

方式三、Distributed Merge Sort Req

MongoDB集群之分片技术应用 —— 学习笔记

手动分片

为什么要手动分片?

为了减少自动平衡过程带来的IO等资源消耗。

前提:

  1. 关闭自动平衡,关闭auto balence;
  2. 充分了解数据,并对数据进行预先划分。

步骤一、关闭自动平衡

关闭方式:sh.stopBalancer()

(启动方式:sh.startBalancer()

此时平衡器状态:CurrentLy enabled: no

步骤二、分片切割

> use admin
> db.runCommand({"enablesharding":"myapp"})
> db.runCommand({"shardcollection":"myapp.users","key":{"email":1}})
for (var x=97;x<97+26;x++) {
for (var y=97;y<97+26;y+=6) {
var prefix = String.fromCharCode(x) + String.fromCharCode(y);
db.runCommand({
split: "myapp.users",
middle: { email: prefix }
});
}
}

步骤三、手动移动分割快

var shServer = [
"ShardServer 1",
"ShardServer 2",
"ShardServer 3",
"ShardServer 4",
"ShardServer 5",
]
for (var x=97;x<97+26;x++) {
for (var y=97;y<97+26;y+=6) {
var prefix = String.fromCharCode(x) + String.fromCharCode(y);
db.runCommand({
moveChunk: "myapp.users",
find: { email: prefix },
to: shServer[(y-97)/6]
});
}
}

实践:

首先登陆233的mongos

执行如下命令来关闭平衡:

mongos> sh.stopBalancer()

然后执行下面代码:

mongos> for (var x=97;x<97+26;x++) {
for (var y=97;y<97+26;y+=6) {
var prefix = String.fromCharCode(x) + String.fromCharCode(y);
db.runCommand({
split: "myapp.users",
middle: { email: prefix }
});
}
}
mongos> var shServer = [
"10.156.11.232:27016",
"10.156.11.232:27017",
"10.156.11.232:27016",
"10.156.11.232:27017",
"10.156.11.232:27016",
]
mongos> for (var x=97;x<97+26;x++) {
for (var y=97;y<97+26;y+=6) {
var prefix = String.fromCharCode(x) + String.fromCharCode(y);
db.runCommand({
moveChunk: "myapp.users",
find: { email: prefix },
to: shServer[(y-97)/6]
});
}
}

常用部署场景

场景一

MongoDB集群之分片技术应用 —— 学习笔记

场景二

MongoDB集群之分片技术应用 —— 学习笔记

考虑因素:

一、预估数据增长量

二、预估集群的访问量

三、预估投入成本(硬件、人员维护等)

场景一部署

机器规划:

MongoDB集群之分片技术应用 —— 学习笔记

三台电脑均相同方式启动如下服务:

mongod --fork --logpath=/opt/data/logs/mongod27018.log -logappend --dbpath=/opt/mdb27018/ --port 27018 --replSet imooc1
mongod --fork --logpath=/opt/data/logs/mongod27019.log -logappend --dbpath=/opt/mdb27019/ --port 27019 --replSet imooc1
mongod --fork --logpath=/opt/data/logs/mongod27020.log -logappend --dbpath=/opt/mdb27020/ --port 27020 --replSet imooc1

在173节点,执行如下命令进入mongod:

mongo 127.0.0.1:27018

在命令行执行如下指令:

cfg = {
_id: 'imooc1', members: [
{ _id: 0, host: '10.156.11.173:27018' },
{ _id: 1, host: '10.156.11.232:27018' }
]
} rs.initiate(cfg) rs.addArb("10.156.11.233:27018")

另外两台电脑的配置类似,此处略。

通过如下命令查看每一个副本集的成员状态:

re.status()

接下来完成对分片的配置(也就是启动configsvr),

在清空之前,我要确认我的configsvr的logpath目录存在,并且log信息是空的:

rm -rf /opt/data/config/*

然后启动configsvr:

mongod --configsvr --logpath=/opt/data/logs/config.log --logappend /opt/data/config --fork --port 27016

在三台电脑上都这么进行启动configsvr的操作。

接下来启动mongos,

这一步需要将所有的configsvr的配置都加上,

如下:

mongos --port 27017 --logappend --logpath=/opt/data/logs/mongos.log --configdb 10.156.11.233:27016,10.156.11.232:27016,10.156.11.173:27016 --fork

同样的,我们可以登陆mongos服务:

mongo 127.0.0.1:27017

这样我们就顺利地把mongos服务启动起来。

接下来登陆到(233上的)mongos上,把我们的成员节点添加进来:

在命令行下执行mongo进入mongos命令行,然后执行如下命令来进行分片配置操作:

mongos> use admin
mongos> db.runCommand({addshard:"imooc1/10.156.11.173:27018,10.156.11.232:27018",name:"shard1",maxsize:20480});
mongos> db.runCommand({addshard:"imooc2/10.156.11.232:27019,10.156.11.233:27019",name:"shard2",maxsize:20480});
mongos> db.runCommand({addshard:"imooc3/10.156.11.233:27020,10.156.11.173:27020",name:"shard3",maxsize:20480});

创建一个测试库:

mongos> use myimooc
mongos> db.user.insert({userid:1,name:"zifeiy",email:"zifeiy@123.com"})
mongos> db.runCommand({ enablesharding:"zifeiy"})
mongos> db.runCommand({"shardcollection":"zifeiy.user","key":{email:1}});