Spark SQL External Data Sources JDBC官方实现写测试

时间:2023-03-08 17:10:01

通过Spark SQL External Data Sources JDBC实现将RDD的数据写入到MySQL数据库中。

jdbc.scala重要API介绍:

/**
* Save this RDD to a JDBC database at `url` under the table name `table`.
* This will run a `CREATE TABLE` and a bunch of `INSERT INTO` statements.
* If you pass `true` for `allowExisting`, it will drop any table with the
* given name; if you pass `false`, it will throw if the table already
* exists.
*/
def createJDBCTable(url: String, table: String, allowExisting: Boolean) /**
* Save this RDD to a JDBC database at `url` under the table name `table`.
* Assumes the table already exists and has a compatible schema. If you
* pass `true` for `overwrite`, it will `TRUNCATE` the table before
* performing the `INSERT`s.
*
* The table must already exist on the database. It must have a schema
* that is compatible with the schema of this RDD; inserting the rows of
* the RDD in order via the simple statement
* `INSERT INTO table VALUES (?, ?, ..., ?)` should not fail.
*/
def insertIntoJDBC(url: String, table: String, overwrite: Boolean)
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._ val sqlContext = new SQLContext(sc)
import sqlContext._ #数据准备
val url = "jdbc:mysql://hadoop000:3306/test?user=root&password=root" val arr2x2 = Array[Row](Row.apply("dave", 42), Row.apply("mary", 222))
val arr1x2 = Array[Row](Row.apply("fred", 3))
val schema2 = StructType(StructField("name", StringType) :: StructField("id", IntegerType) :: Nil) val arr2x3 = Array[Row](Row.apply("dave", 42, 1), Row.apply("mary", 222, 2))
val schema3 = StructType(StructField("name", StringType) :: StructField("id", IntegerType) :: StructField("seq", IntegerType) :: Nil) import org.apache.spark.sql.jdbc._ ================================CREATE======================================
val srdd = sqlContext.applySchema(sc.parallelize(arr2x2), schema2) srdd.createJDBCTable(url, "person", false)
sqlContext.jdbcRDD(url, "person").collect.foreach(println)
[dave,42]
[mary,222] ==============================CREATE with overwrite========================================
val srdd = sqlContext.applySchema(sc.parallelize(arr2x3), schema3)
srdd.createJDBCTable(url, "person2", false)
sqlContext.jdbcRDD(url, "person2").collect.foreach(println)
[mary,222,2]
[dave,42,1] val srdd2 = sqlContext.applySchema(sc.parallelize(arr1x2), schema2)
srdd2.createJDBCTable(url, "person2", true)
sqlContext.jdbcRDD(url, "person2").collect.foreach(println)
[fred,3] ================================CREATE then INSERT to append======================================
val srdd = sqlContext.applySchema(sc.parallelize(arr2x2), schema2)
val srdd2 = sqlContext.applySchema(sc.parallelize(arr1x2), schema2)
srdd.createJDBCTable(url, "person3", false)
sqlContext.jdbcRDD(url, "person3").collect.foreach(println)
[mary,222]
[dave,42] srdd2.insertIntoJDBC(url, "person3", false)
sqlContext.jdbcRDD(url, "person3").collect.foreach(println)
[mary,222]
[dave,42]
[fred,3] ================================CREATE then INSERT to truncate======================================
val srdd = sqlContext.applySchema(sc.parallelize(arr2x2), schema2)
val srdd2 = sqlContext.applySchema(sc.parallelize(arr1x2), schema2) srdd.createJDBCTable(url, "person4", false)
sqlContext.jdbcRDD(url, "person4").collect.foreach(println)
[dave,42]
[mary,222] srdd2.insertIntoJDBC(url, "person4", true)
[fred,3] ================================Incompatible INSERT to append======================================
val srdd = sqlContext.applySchema(sc.parallelize(arr2x2), schema2)
val srdd2 = sqlContext.applySchema(sc.parallelize(arr2x3), schema3)
srdd.createJDBCTable(url, "person5", false)
srdd2.insertIntoJDBC(url, "person5", true)

java.sql.SQLException: Column count doesn't match value count at row 1