1814: Ural 1519 Formula 1
Time Limit: 1 Sec Memory Limit: 64 MB
Submit: 924 Solved: 351
[Submit][Status][Discuss]
Description
一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数
Input
The first line contains the integer numbers N and M (2 ≤ N, M ≤ 12). Each of the next N lines contains M characters, which are the corresponding cells of the rectangle. Character "." (full stop) means a cell, where a segment of the race circuit should be built, and character "*" (asterisk) - a cell, where a gopher hole is located.
Output
You should output the desired number of ways. It is guaranteed, that it does not exceed 2^63-1.
Sample Input
4 4
**..
....
....
....
**..
....
....
....
Sample Output
2
分析:今天把插头dp学了一下,没想到dp还能写这么长......细节什么的也很多,在这里当一个模板吧.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std;
typedef long long ll; const int maxn = ;
const int pow[] = {,,,,,,,,,,,,};
int n,m,now,pre,tx,ty;
char map[][]; struct node
{
int head[maxn],nextt[maxn],tot;
ll sum[maxn],sta[maxn];
void clear()
{
memset(head,-,sizeof(head));
tot = ;
}
void push(ll x,ll v)
{
ll hashh = x % maxn;
for (int i = head[hashh]; i >= ; i = nextt[i])
{
if (sta[i] == x)
{
sum[i] += v;
return;
}
}
sta[tot] = x;
sum[tot] = v;
nextt[tot] = head[hashh];
head[hashh] = tot++;
}
} f[]; int turnleft(ll x,int k)
{
return x << pow[k];
} int get(ll x,int k)
{
return (x >> pow[k]) & ;
} ll del(ll x,int i,int j)
{
return x & (~( << pow[i])) & (~( << pow[j]));
} int findr(ll x,int pos)
{
int cnt = ;
for (int i = pos + ; i <= m; i++)
{
int k = get(x,i);
if (k == )
cnt++;
else if (k == )
cnt--;
if (!cnt)
return i;
}
} int findl(ll x,int pos)
{
int cnt = ;
for (int i = pos - ; i >= ; i--)
{
int k = get(x,i);
if (k == )
cnt++;
else if (k == )
cnt--;
if (!cnt)
return i;
}
} void solve2(int x,int y,int k)
{
int p = get(f[pre].sta[k],y - ); //右插头
int q = get(f[pre].sta[k],y); //下插头
ll staa = del(f[pre].sta[k],y - ,y); //将这两个插头删掉以后的状态
ll v = f[pre].sum[k];
if (!p && !q) //新建一个连通分量
{
if (map[x][y] == '*')
{
f[now].push(staa,v);
return;
}
if (x < n && y < n && map[x + ][y] == '.' && map[x][y + ] == '.')
f[now].push(staa | turnleft(,y - ) | turnleft(,y),v);
}
else if (!p || !q) //保持原来的连通分量
{
int temp = p + q;
if (x < n && map[x + ][y] == '.')
f[now].push(staa | turnleft(temp,y - ),v);
if (y < m && map[x][y + ] == '.')
f[now].push(staa | turnleft(temp,y),v);
}
else if (p == && q == ) //连接两个联通分量
f[now].push(staa ^ turnleft(,findr(staa,y)),v); //这里的异或实际上就是把1变成2,2变成1
else if (p == && q == )
f[now].push(staa ^ turnleft(,findl(staa,y - )),v);
else if (p == && q == )
f[now].push(staa,v);
else if (x == tx && y == ty)
f[now].push(staa,v);
} ll solve()
{
f[].clear();
f[].push(,);
now = ,pre = ; //滚动数组
for (int i = ; i <= n; i++)
{
pre = now;
now ^= ;
f[now].clear();
for (int k = ; k < f[pre].tot; k++)
f[now].push(turnleft(f[pre].sta[k],),f[pre].sum[k]); //左移一位,因为轮廓线下来的时候会少一个插头
for (int j = ; j <= m; j++)
{
pre = now;
now ^= ;
f[now].clear();
for (int k = ; k < f[pre].tot; k++)
solve2(i,j,k); //处理第k个状态
}
}
for (int i = ; i < f[now].tot; i++)
if (f[now].sta[i] == ) //没有插头了.
return f[now].sum[i];
return ;
} int main()
{
scanf("%d%d",&n,&m);
for(int i = ; i <= n; i++)
scanf("%s",map[i] + );
for (int i = ; i <= n; i++)
for (int j = ; j <= m; j++)
if (map[i][j] == '.')
tx = i,ty = j; //找右下角的非障碍点
if (!tx)
puts("");
else
printf("%lld\n",solve()); return ;
}