https://www.codechef.com/DEC17/problems/CHEFEXQ
题意:
位置i的数改为k
询问区间[1,i]内有多少个前缀的异或和为k
分块
sum[i][j] 表示第i块内,有多少个前缀,他们的异或和为j
a[i] 表示 位置i的数
位置i改为k:
若 g=x1^x2^x3……
把 x1 改为 k 后,那新的g=x1^x1^k^x2^x3……
所以修改可以看做整体异或 修改后的值^原来的值
即
区间[i,n] 异或上a[i]^k
i所在块单个改,后面的块整体打标记
查询:
i所在块单个查
前面的块 累加sum[][k^标记]
#include<cmath> #include<cstdio> #include<iostream> #include<algorithm> using namespace std; #define N 100001 #define S 318 const int K=1<<20; int sum[S][K+1]; int tag[S]; int a[N],prexo[N]; int bl[N]; void read(int &x) { x=0; char c=getchar(); while(!isdigit(c)) c=getchar(); while(isdigit(c)) { x=x*10+c-'0'; c=getchar(); } } int main() { int n,q; read(n); read(q); for(int i=1;i<=n;++i) { read(a[i]); prexo[i]=prexo[i-1]^a[i]; } int siz=sqrt(n); for(int i=1;i<=n;++i) { bl[i]=(i-1)/siz+1; sum[bl[i]][prexo[i]]++; } int tot=bl[n]; int ty,x,k; int m,res,pos; int ans; while(q--) { read(ty); read(x); read(k); pos=bl[x]; if(ty==1) { res=a[x]^k; a[x]=k; m=min(pos*siz,n); if(tag[pos]) { for(int i=(pos-1)*siz+1;i<=m;++i) { sum[pos][prexo[i]]--; prexo[i]^=tag[pos]; sum[pos][prexo[i]]++; } tag[pos]=0; } for(int i=x;i<=m;++i) { sum[pos][prexo[i]]--; prexo[i]^=res; sum[pos][prexo[i]]++; } for(int i=pos+1;i<=tot;++i) tag[i]^=res; } else { ans=0; for(int i=(pos-1)*siz+1;i<=x;++i) { if((prexo[i]^tag[pos])==k) ans++; } for(int i=1;i<pos;++i) ans+=sum[i][k^tag[i]]; cout<<ans<<'\n'; } } }
Read problems statements in Mandarin chinese, Russian andVietnamese as well.
Chef always likes to play with arrays. He came up with a new term "magical subarray". A subarray is called magical if its starting index is 1 (1-based indexing). Now, Chef has an array of N elements and 2 types of queries:
- type 1: Given two numbers i and x, the value at index i should be updated to x.
- type 2: Given two numbers i and k, your program should output the total number ofmagical subarrays with the last index ≤ i in which the xor of all elements is equal tok.
Input
- The first line of the input contains two integers N and Q denoting the number of elements in the array and the number of queries respectively.
- The second line contains N space-separated integers A1, A2 ... AN denoting the initial values of the array.
- Each of the following Q lines describes an operation. If the first integer is 1, it means that the operation is of type 1 and it will be followed by two integers i and x. If the first integer is 2, it means that the operations is of type 2 and it will be followed by two integers i and k.
Output
For each operation of type 2, print the number of magical subarrays on a separate line.
Constraints
- 1 ≤ N, Q ≤ 100,000
- 1 ≤ A[i] ≤ 1,000,000
- 1 ≤ i ≤ N
- 1 ≤ x, k ≤ 1,000,000
Subtasks
Subtask #1 (20 points): 1 ≤ N, Q ≤ 1,000
Subtask #2 (30 points): 1 ≤ N, Q ≤ 10,000
Subtask #3 (50 points): original constraints
Example
Input: 5 3 1 1 1 1 1 2 5 1 1 3 2 2 5 1 Output: 3 1