XJOI网上同步训练DAY2 T1

时间:2023-03-08 17:08:03

【问题描述】

为了迎接校庆月亮中学操场开始施工。不久后操场下发现了很多古墓这些古墓中有很多宝藏。然而学生们逐渐发现自从操场施工之后学校的运气就开始变得特别不好。后来经过调查发现古墓下有一个太守坟由于操场施工惊动了太守所以学校的运气才会特别不好。

你——月亮中学的学生之一为了拯救学校在梦中和太守进行了沟通。太守说“只要你能解决这个问题我就保佑你们从此事事顺心。你看操场下的古墓中有aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA9UlEQVR4nGP5//8/AymAhSTVw1HDvzf7GqIimvdoLL5Ydbsyr3/rbRbbtv07K/U5cWhgEnHMSVBv2/t0fuP+1M5Tj2ubdC1mLrtZqG/AgctJPx6duv9X2Ll4RruXCNOP8yxMzLxiPMy4/fD/y53zL7ltY2xFmICcr/fPPedU0xVnxa3h56PT9//Je8uDXfDzyem7f2UzFDgYcGr4/+Xu2eec6gYSYDO/3T39jF1NX4IVt4afj4EWyHnIc0I4Z+79kUtBswBFw/+vQAs41AwkwWZ+vXf68b+3J5ZveVAdpMCGVQOjcMi+XyEwnlDg7t9YEvIgTEsAgI9iPMzsytMAAAAASUVORK5CYII=" alt="+vQAs41AwkwWZ+vXf68b+3J5ZveVAdpMCGVQOjcM" /> 个宝藏编号为aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAAfklEQVR4nGP5//8/AymAhSTV1NLw+9WR6cU50zkmn5lty01Aw7/3J2fWdW+//+jAxVdBRNnAoRzeszrlSb/R1lainMTEKSIEdBMO92OzgSAY1QAM0MebJ0zZee36gVsM797Vp2UaqFkml8Rpc+PUwCrrW9rpC2TMp5WTaKABAIOLKT2S4H+GAAAAAElFTkSuQmCC" alt="R1lainMTEKSIEdBMO92OzgSAY1QAM0MebJ0zZee3" /> 到aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA9UlEQVR4nGP5//8/AymAhSTVw1HDvzf7GqIimvdoLL5Ydbsyr3/rbRbbtv07K/U5cWhgEnHMSVBv2/t0fuP+1M5Tj2ubdC1mLrtZqG/AgctJPx6duv9X2Ll4RruXCNOP8yxMzLxiPMy4/fD/y53zL7ltY2xFmICcr/fPPedU0xVnxa3h56PT9//Je8uDXfDzyem7f2UzFDgYcGr4/+Xu2eec6gYSYDO/3T39jF1NX4IVt4afj4EWyHnIc0I4Z+79kUtBswBFw/+vQAs41AwkwWZ+vXf68b+3J5ZveVAdpMCGVQOjcMi+XyEwnlDg7t9YEvIgTEsAgI9iPMzsytMAAAAASUVORK5CYII=" alt="+vQAs41AwkwWZ+vXf68b+3J5ZveVAdpMCGVQOjcM" /> 。现在你必须选择宝藏的一个集合可以不选或者全选。我有两种条件第一种条件有aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAB0AAAASCAIAAAAop0KNAAABxklEQVR4nGP5//8/Aw0ACy0MHZzm/n51ZHpxznSOyWdm23JTx9x/70/OrOvefv/RgYuvgrCqINO9HMrhPatTnvQbbW3FrgDF3H9vDzRGhjftUZl/uvRaSc6Eg78c+g6s9r1UHZM/4wx78LwjS2PlwBqYOEWEgAGBx2IUc5mE7XNTtdr2Plo24Xrp4gu+bXp2LdmpV/3yNlx0SVMJnnZwYnSsBBNRHkILh5+PTt37w2+Z01fuKvrj+L9/DMyKKV0FNoKfdzD8Z+Xn5yDOUAxz/3+5e+Y5j1OyoygTw79Pty+9EXSPtxZkZPj9/MLtn1KBCpzEGotm7s/Hp+/9k/dS4ACyfzw8eZ9BIQbM/v7g5CNmJWMZdvLM/f/1zpnnHOr6EqzAOPx08/xrXi0tYWZgBL24cPOHpK8SF9HGopr789GZe3/lMsFO/Pnw1IP/8pEQpwOdy6RkIku8c1HM/f/17ulnHGpQ5946/4pXS0cEqAAYuje//vm3dckRhxxbUaD7GX4/3jxhys5r1w/cYnj3rj4t00DNMrkkTpsbu7mMwiH7foVA2EzisUf/xELYrGplV/+XIbuGVda3tNMXyJhPVDhQEQw1cwFY87NpUje2wgAAAABJRU5ErkJggg==" alt="+XIbuGVda3tNMXyJhPVDhQEQw1cwFY87NpUje2wg" /> 个每一种条件形如‘如果你选择了宝藏aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA8UlEQVR4nGP5//8/AymAhSTVw1TDv3fHJmTFFG9QWvpgV5TE37vTXA2alLffnWvDjUMDk5BV4dQJh7cFT9n8NDyJ/ebVv3699RbcCAVYnMQo7FQYLuQ0edbCe+d3ac2YFyWHrAirH3jMspNk57T0Bp05maXNxYjXD2B/vDm68jgzJ8Pb598ZGNElMTT8e3egNna6RP/WyXl6RRMOtFv7CDHi1vD/04mGwMp/bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDmY2RgFHXN9+HwrMhu5Z9U6SfLilUDq1rZlX9lUA6jgMfKD5gpeRCmJQCP91VPbewhRAAAAABJRU5ErkJggg==" alt="bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDm" /> 那么你必须选择宝藏aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABIAAAASCAIAAADZrBkAAAABFUlEQVR4nGP5//8/A+mAhQw9I07brwerKuNS+p7kXrzeqsfO8OtGl41OBePMx8eSpZnxaGNTCGuoXT3b58StL//12BnZFFwdFKd+0hRkRlaE1ZGcqvbKf7uOP/gZIszx8+7m/aLZS0y4CPuNRczQROjFqRsf/xt+2dG6yahlrxobIb+BAIeyvRrj1mP33+vt7P6QscyOnxHdYKzamAS0rSTf7tu34Pku26bdcpiKcEQAh4KNJlN3Q5fCiktGXFjkccUbt7qdIufz+BYfMSZs0ri0/Xz9UjypP0OdDbs0dm2/bi/oeZ02DTMosGr7fW9J9x3PcrMb7YXHA6cukmLGoQlN26/Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAABJRU5ErkJggg==" alt="Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAAB" /> ’第二种条件有aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAB0AAAASCAIAAAAop0KNAAACPklEQVR4nGP5//8/Aw0ACy0MHWzm/rjUERw1+x6bhCjXjzfveWzyJ/SkGPIxUWzu79c3/iRuu1iszsbw7/2+LG1nl69yd5Z4CDJSaC6HWlyZqiIbiMkkaBbuwDdzz/ob3z0suXCY++/tgcbI8KY9KvNPl14ryZlw8JdD34HVvpeqY/JnnGEPnndkaawcSAOrrJMzkq6//xnYuFgZkU1CNZdJ2D43Vatt76NlE66XLr7g26Zn15KdetUvb8NFlzSV4GkHJ0bHSqAEIzBMXpy/+lnE1V+dE7e5DAw/H52694ffMqev3FX0x/F//xiYFVO6CmwEP+9g+M/Kz8+BZigDw5ezU6c9d+ust+FFFUc19/+Xu2ee8zglO4oyMfz7dPvSG0H3eGtgdPx+fuH2T6lABVQ3Mfx9ta007XDAyh0J8ujxhMr/+fj0vX/yXgocQPaPhyfvMyjEgNnfH5x8xKxkLMOOYujO8tBegb4dLS4iGN5ANff/1ztnnnOo60uwAmPj083zr3m1tISZQWF44eYPSV8lRHz/frw2P2GFev+GPCNeRgxD0c39+ejMvb9ymWAn/nx46sF/+UiI04HOZVIykYU69/ejJbFOrSy5zUrPDm59BhZiFtCys1biZsRq7v+vd08/41CDOvfW+Ve8WjoiQAXA0L359c+/rUuOOOTYijIzfL+2csPdGz8LQpci9Gq03bhYqc6G1VxG4ZB9v0IgbCbx2KN/YiFsVrWyq//LEOr4PDb/IFQIDqpyZwDNBQDkruJDDS+i8wAAAABJRU5ErkJggg==" alt="IFQIDqpyZwDNBQDkruJDDS+i8wAAAABJRU5ErkJg" /> 个每一种条件形如‘如果你选择了宝藏aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA8UlEQVR4nGP5//8/AymAhSTVw1TDv3fHJmTFFG9QWvpgV5TE37vTXA2alLffnWvDjUMDk5BV4dQJh7cFT9n8NDyJ/ebVv3699RbcCAVYnMQo7FQYLuQ0edbCe+d3ac2YFyWHrAirH3jMspNk57T0Bp05maXNxYjXD2B/vDm68jgzJ8Pb598ZGNElMTT8e3egNna6RP/WyXl6RRMOtFv7CDHi1vD/04mGwMp/bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDmY2RgFHXN9+HwrMhu5Z9U6SfLilUDq1rZlX9lUA6jgMfKD5gpeRCmJQCP91VPbewhRAAAAABJRU5ErkJggg==" alt="bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDm" /> 那么你不能选择宝藏aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABIAAAASCAIAAADZrBkAAAABFUlEQVR4nGP5//8/A+mAhQw9I07brwerKuNS+p7kXrzeqsfO8OtGl41OBePMx8eSpZnxaGNTCGuoXT3b58StL//12BnZFFwdFKd+0hRkRlaE1ZGcqvbKf7uOP/gZIszx8+7m/aLZS0y4CPuNRczQROjFqRsf/xt+2dG6yahlrxobIb+BAIeyvRrj1mP33+vt7P6QscyOnxHdYKzamAS0rSTf7tu34Pku26bdcpiKcEQAh4KNJlN3Q5fCiktGXFjkccUbt7qdIufz+BYfMSZs0ri0/Xz9UjypP0OdDbs0dm2/bi/oeZ02DTMosGr7fW9J9x3PcrMb7YXHA6cukmLGoQlN26/Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAABJRU5ErkJggg==" alt="Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAAB" /> ’你需要求出你有多少种选择集合的方式满足所有条件。

身为月亮中学的学生为了学校你必须回答这个问题。

【输入格式】

从文件treasure.in 中读入数据。

输入的第一行包含三个整数aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEgAAAASCAIAAAB3mg+BAAAEHUlEQVR4nGP5//8/w3AELAPtAFqBUY9RDn6/OjK9OGc6x+Qzs225KTPqx6WO4KjZ99gkRLl+vHnPY5M/oSfFkI8JWQl9PPbv/cmZdd3b7z86cPFVEBXM+/36xp/EbReL1dmARu/L0nZ2+Sp3Z4mHICNCCZ1ijEM5vGd1ypN+o62tVDFOLa5MVZENxGQSNAt34Ju5Z/2N7x6WXAglKB7792ZfQ1RE8x6NxRerblfm9W+9zWLbtn9npT4ndvP/vT3QGBnetEdl/unSayU5Ew7+cug7sNr3UnVM/owz7MHzjiyNlQNbwMQpIgQMZ4IOJtZAVlknZyRdf/8zsHGxMqIYheIxJhHHnAT1tr1P5zfuT+089bi2Sddi5rKbhfoGHFjdwSRsn5uq1bb30bIJ10sXX/Bt07NryU696pe34aJLmkrwtIMTo2MlmLBqxQ7IMfD3i/NXP4u4+qujhj5aUvzx6NT9v8LOxTPavUSYfpxnYWLmFeNhxu2Sn49O3fvDb5nTV+4q+uP4v38MzIopXQU2gp93MPxn5efnIMVX5Bn45ezUac/dOutteFHFUT32/8ud8y+5bWNsRYAG/P96/9xzTjVdcVaczvj/5e6Z5zxOyY6iTAz/Pt2+9EbQPd4amIV/P79w+6dUoAKOJIwbkGjg31fbStMOB6zckSCPXlig8n8+On3/n7y3PDjl/Xxy+u5f2QwF7MkQov7x6Xv/5L3ASn48PHmfQSEGzP7+4OQjZiVjGXZSPUaKgX9f7SwP7RXo29HiIoKZMlA8Bgyvs8851Q0kwHH07e7pZ+xq+hJ4IuzrnTPPOdTBSv59unn+Na+WljAzKNlfuPlD0leJC6dOig38/XhtfsIK9f4NeUa8jNiMQvEYMLzu/5PzkOeEcM7c+yOXghRhP85Xm1hOk+g7sz1LGezbn4/O3PsrlwlW8vPhqQf/5SMhYQ0MXyYlE1lCEfbpYJquy3qd6ac2pCiSYuDvR0tinVpZcpuVnh3c+gwsxCygZWetxI3wI7LH/n8FRhiHmoEk2JKv904//vf2xPItD6qDFCBVBq+0NPuHA5tvfId4DKj+9DMONWj43jr/ildLRwRoIDBD3Pz659/WJUcccmxFmcHhu3nClJ3Xrh+4xfDuXX1apoGaZXJJnDabkJIc+5vda699h3iMWAO/X1u54e6NnwWhSxGO12i7cbFSnQ2rxxiFQ/b9CoHxhAJ3/0Zt+LOppM1sWxH1VZUTUz2TeOzRP7EQNqta2dX/Zcg6WWV9Szt9gYz5qFGmW7KofUv0D1IN5PPY/INQn4T4lsf/TxcX1LWcCps+TRV3riMJ/LizqqH6RODkGdQyEBmQ4DEmfrOiBQly3FjzKlmASzttdogSH8mVHTGAeI8x8Sho81DVbg4pbSWqGogMAM8yIZDh3mqoAAAAAElFTkSuQmCC" alt="LizqqH6RODkGdQyEBmQ4DEmfrOiBQly3FjzKlmAS" /> 分别表示物品数第一种条件数第二种条件数。

接下来aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAB0AAAASCAIAAAAop0KNAAABxklEQVR4nGP5//8/Aw0ACy0MHZzm/n51ZHpxznSOyWdm23JTx9x/70/OrOvefv/RgYuvgrCqINO9HMrhPatTnvQbbW3FrgDF3H9vDzRGhjftUZl/uvRaSc6Eg78c+g6s9r1UHZM/4wx78LwjS2PlwBqYOEWEgAGBx2IUc5mE7XNTtdr2Plo24Xrp4gu+bXp2LdmpV/3yNlx0SVMJnnZwYnSsBBNRHkILh5+PTt37w2+Z01fuKvrj+L9/DMyKKV0FNoKfdzD8Z+Xn5yDOUAxz/3+5e+Y5j1OyoygTw79Pty+9EXSPtxZkZPj9/MLtn1KBCpzEGotm7s/Hp+/9k/dS4ACyfzw8eZ9BIQbM/v7g5CNmJWMZdvLM/f/1zpnnHOr6EqzAOPx08/xrXi0tYWZgBL24cPOHpK8SF9HGopr789GZe3/lMsFO/Pnw1IP/8pEQpwOdy6RkIku8c1HM/f/17ulnHGpQ5946/4pXS0cEqAAYuje//vm3dckRhxxbUaD7GX4/3jxhys5r1w/cYnj3rj4t00DNMrkkTpsbu7mMwiH7foVA2EzisUf/xELYrGplV/+XIbuGVda3tNMXyJhPVDhQEQw1cwFY87NpUje2wgAAAABJRU5ErkJggg==" alt="+XIbuGVda3tNMXyJhPVDhQEQw1cwFY87NpUje2wg" /> 行每行两个正整数aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACIAAAASCAIAAACxX5s4AAACNElEQVR4nGP5//8/A+0BCx3sGLVmSFnz792xCVkxxRuUlj7YFSXx9+40V4Mm5e1359pw4zLh14NVlXEpfU9yL15v1WNn+HWjy0angnHm42PJ0sw4rWESsiqcOuHwtuApm5+GJ7HfvPrXr7feAqcdQMCmENZQu3q2z4lbX/7rsTOyKbg6KE79pCnIjKwIS6AxCjsVhgs5TZ618N75XVoz5kXJEQpZTlV75b9dxx/8DBHm+Hl3837R7CUmXCgqsJrAY5adJDunpTfozMksbS5GApYADREzNBF6cerGx/+GX3a0bjJq2avGhqYCi65/b46uPM7MyfD2+XcGwnaAAIeyvRrj1mP33+vt7P6QscyOH10bhjX/3h2ojZ0u0b91cp5e0YQD7dY+QoStYhLQtpJ8u2/fgue7bJt2YwlkVJH/n040BFb+a9uRZ8j7Os8pL7Zv63PPWClobP44X21iOU2i78z2LGVWNO8o2GgydTd0Kay4ZIQaK1is+X17RkrLVaMd2nyMDIyirvk+HJ4V2a38kyr9ZEHGMvFKS7N/OLD5xncMaxi41e0UOZ/Ht/iIMWHzLoo1rGplV/6VQTmMAh4rP6CU3mwqaTPbVkR9VeXENOfn65fiSf0Z6myYUhjW4AX/P11cUNdyKmz6NFV0rzD8ur2g53XaNMyoJ8MaJn6zogUJctwIo37fW9J9x7Pc7EZ74fHAqYukmHFqJt4aJh4FbR5UoV+Pd0/0yp6q7lgwd0GsPD6jAH0XyDd6J2TfAAAAAElFTkSuQmCC" alt="0yp6q7lgwd0GsPD6jAH0XyDd6J2TfAAAAAElFTkS" /> 表示如果你选择了宝藏aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA8UlEQVR4nGP5//8/AymAhSTVw1TDv3fHJmTFFG9QWvpgV5TE37vTXA2alLffnWvDjUMDk5BV4dQJh7cFT9n8NDyJ/ebVv3699RbcCAVYnMQo7FQYLuQ0edbCe+d3ac2YFyWHrAirH3jMspNk57T0Bp05maXNxYjXD2B/vDm68jgzJ8Pb598ZGNElMTT8e3egNna6RP/WyXl6RRMOtFv7CDHi1vD/04mGwMp/bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDmY2RgFHXN9+HwrMhu5Z9U6SfLilUDq1rZlX9lUA6jgMfKD5gpeRCmJQCP91VPbewhRAAAAABJRU5ErkJggg==" alt="bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDm" /> 那么你必须选择宝藏aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABIAAAASCAIAAADZrBkAAAABFUlEQVR4nGP5//8/A+mAhQw9I07brwerKuNS+p7kXrzeqsfO8OtGl41OBePMx8eSpZnxaGNTCGuoXT3b58StL//12BnZFFwdFKd+0hRkRlaE1ZGcqvbKf7uOP/gZIszx8+7m/aLZS0y4CPuNRczQROjFqRsf/xt+2dG6yahlrxobIb+BAIeyvRrj1mP33+vt7P6QscyOnxHdYKzamAS0rSTf7tu34Pku26bdcpiKcEQAh4KNJlN3Q5fCiktGXFjkccUbt7qdIufz+BYfMSZs0ri0/Xz9UjypP0OdDbs0dm2/bi/oeZ02DTMosGr7fW9J9x3PcrMb7YXHA6cukmLGoQlN26/Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAABJRU5ErkJggg==" alt="Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAAB" /> 。

接下来aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAB0AAAASCAIAAAAop0KNAAACPklEQVR4nGP5//8/Aw0ACy0MHWzm/rjUERw1+x6bhCjXjzfveWzyJ/SkGPIxUWzu79c3/iRuu1iszsbw7/2+LG1nl69yd5Z4CDJSaC6HWlyZqiIbiMkkaBbuwDdzz/ob3z0suXCY++/tgcbI8KY9KvNPl14ryZlw8JdD34HVvpeqY/JnnGEPnndkaawcSAOrrJMzkq6//xnYuFgZkU1CNZdJ2D43Vatt76NlE66XLr7g26Zn15KdetUvb8NFlzSV4GkHJ0bHSqAEIzBMXpy/+lnE1V+dE7e5DAw/H52694ffMqev3FX0x/F//xiYFVO6CmwEP+9g+M/Kz8+BZigDw5ezU6c9d+ust+FFFUc19/+Xu2ee8zglO4oyMfz7dPvSG0H3eGtgdPx+fuH2T6lABVQ3Mfx9ta007XDAyh0J8ujxhMr/+fj0vX/yXgocQPaPhyfvMyjEgNnfH5x8xKxkLMOOYujO8tBegb4dLS4iGN5ANff/1ztnnnOo60uwAmPj083zr3m1tISZQWF44eYPSV8lRHz/frw2P2GFev+GPCNeRgxD0c39+ejMvb9ymWAn/nx46sF/+UiI04HOZVIykYU69/ejJbFOrSy5zUrPDm59BhZiFtCys1biZsRq7v+vd08/41CDOvfW+Ve8WjoiQAXA0L359c+/rUuOOOTYijIzfL+2csPdGz8LQpci9Gq03bhYqc6G1VxG4ZB9v0IgbCbx2KN/YiFsVrWyq//LEOr4PDb/IFQIDqpyZwDNBQDkruJDDS+i8wAAAABJRU5ErkJggg==" alt="IFQIDqpyZwDNBQDkruJDDS+i8wAAAABJRU5ErkJg" /> 行每行两个正整数aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACIAAAASCAIAAACxX5s4AAACNElEQVR4nGP5//8/A+0BCx3sGLVmSFnz792xCVkxxRuUlj7YFSXx9+40V4Mm5e1359pw4zLh14NVlXEpfU9yL15v1WNn+HWjy0angnHm42PJ0sw4rWESsiqcOuHwtuApm5+GJ7HfvPrXr7feAqcdQMCmENZQu3q2z4lbX/7rsTOyKbg6KE79pCnIjKwIS6AxCjsVhgs5TZ618N75XVoz5kXJEQpZTlV75b9dxx/8DBHm+Hl3837R7CUmXCgqsJrAY5adJDunpTfozMksbS5GApYADREzNBF6cerGx/+GX3a0bjJq2avGhqYCi65/b46uPM7MyfD2+XcGwnaAAIeyvRrj1mP33+vt7P6QscyOH10bhjX/3h2ojZ0u0b91cp5e0YQD7dY+QoStYhLQtpJ8u2/fgue7bJt2YwlkVJH/n040BFb+a9uRZ8j7Os8pL7Zv63PPWClobP44X21iOU2i78z2LGVWNO8o2GgydTd0Kay4ZIQaK1is+X17RkrLVaMd2nyMDIyirvk+HJ4V2a38kyr9ZEHGMvFKS7N/OLD5xncMaxi41e0UOZ/Ht/iIMWHzLoo1rGplV/6VQTmMAh4rP6CU3mwqaTPbVkR9VeXENOfn65fiSf0Z6myYUhjW4AX/P11cUNdyKmz6NFV0rzD8ur2g53XaNMyoJ8MaJn6zogUJctwIo37fW9J9x7Pc7EZ74fHAqYukmHFqJt4aJh4FbR5UoV+Pd0/0yp6q7lgwd0GsPD6jAH0XyDd6J2TfAAAAAElFTkSuQmCC" alt="0yp6q7lgwd0GsPD6jAH0XyDd6J2TfAAAAAElFTkS" /> 表示如果你选择了宝藏aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA8UlEQVR4nGP5//8/AymAhSTVw1TDv3fHJmTFFG9QWvpgV5TE37vTXA2alLffnWvDjUMDk5BV4dQJh7cFT9n8NDyJ/ebVv3699RbcCAVYnMQo7FQYLuQ0edbCe+d3ac2YFyWHrAirH3jMspNk57T0Bp05maXNxYjXD2B/vDm68jgzJ8Pb598ZGNElMTT8e3egNna6RP/WyXl6RRMOtFv7CDHi1vD/04mGwMp/bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDmY2RgFHXN9+HwrMhu5Z9U6SfLilUDq1rZlX9lUA6jgMfKD5gpeRCmJQCP91VPbewhRAAAAABJRU5ErkJggg==" alt="bTvyDHlf5znlxfZtfe4ZK8WMS8Pv2zNSWq4a7dDm" /> 那么你不能选择宝藏aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABIAAAASCAIAAADZrBkAAAABFUlEQVR4nGP5//8/A+mAhQw9I07brwerKuNS+p7kXrzeqsfO8OtGl41OBePMx8eSpZnxaGNTCGuoXT3b58StL//12BnZFFwdFKd+0hRkRlaE1ZGcqvbKf7uOP/gZIszx8+7m/aLZS0y4CPuNRczQROjFqRsf/xt+2dG6yahlrxobIb+BAIeyvRrj1mP33+vt7P6QscyOnxHdYKzamAS0rSTf7tu34Pku26bdcpiKcEQAh4KNJlN3Q5fCiktGXFjkccUbt7qdIufz+BYfMSZs0ri0/Xz9UjypP0OdDbs0dm2/bi/oeZ02DTMosGr7fW9J9x3PcrMb7YXHA6cukmLGoQlN26/Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAABJRU5ErkJggg==" alt="Huyd6ZU9VdyyYuyBWHl9yBQCs3l0oZz2AXwAAAAB" /> 。

【输出格式】

输出到treasure.out中。

输出一行一个整数表示你有多少种选择集合的方式。

【样例输入1】

5 3 3

1 2

1 4

2 5

3 5

4 5

3 5

【样例输出1】

6

【样例说明1】

用一个整数来表示编号为这个整数的宝藏则6种满足所有条件的宝藏集合为

{},{3},{4},{3,4},{5},{2,5}

而例如{1,4,5}这个集合就是不满足所有条件的它不既满足第一个第一种条件“如果你选择了宝藏1那么你必须选择宝藏2”也不满足第二个第二种条件“如果你选择了宝藏4那么你不能选择宝藏5”。

【样例输入2】

40 0 0

【样例输出2】

1099511627776

【样例说明2】

所有集合都是可行的故答案是aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABoAAAAUCAIAAAAcIrrpAAAB90lEQVR4nGP5//8/A/UACxXNIs24/+93pznOCT280o35yvSy2a9leR7fly3oz9DmJMO4/59PT+3b95o7lOHfy03VKxV7dhfLXa+1r9wUtCFcjIlU475fWbxRMs5BZD0Dw487e29y+4uxMrDLmQjc3HL7R7gYF2nG/bq9fBlHQplc7yQg5++397/ZWUEOYmLn/PPh218khajG/bjUERw1+x6bhCjXjzfveWzyJ/SkGPL9e7Ru/veoWlX282BFzNxCbD9//QMZ/P0bqxA3M07jfr++8Sdx28VidTaGf+/3ZWk7u3yVu7NAfeeK3YveHF7x78PVKw+Ppy+b7a325cbL374cj858UHdR5cBpHIdaXJmqIhuIySRoFu7AN3PP+hu/Z6ZuOJ0KFPp2LMNyQtDMFDNm87CivsYWgedvE9t9RJlwGscq6+SM4P37+5+BjYuVEcbnsppx0QrM0s2eMQNrIOOOit8vzl/9LOLqr86JUwkJxn05O3Xac7fOehteEkzDYdzfV9tK0w4HrNyRIE9aLsSi+u+rneWhvQJ9O1pcRJgwpUky7vfjtfkJK9T7N+QZ8TJi1UG8cb8fLYl1amXJbVZ6dnDrM7AQs4CWnbUSN7Emoxj3/drKDXdv/CwIXYoQ02i7cbFSnY0c4/g8Nv+grDAduOKTGAAABJq+hWq4pHIAAAAASUVORK5CYII=" alt="g8Nv+grDAduOKTGAAABJq+hWq4pHIAAAAASUVORK" /> 。

【样例输入输出3】

见下发的treasure/treasure.intreasure/treasure.ans

【数据规模和约定】

数据点

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAASCAIAAADdWck9AAAA9UlEQVR4nGP5//8/AymAhSTVw1HDvzf7GqIimvdoLL5Ydbsyr3/rbRbbtv07K/U5cWhgEnHMSVBv2/t0fuP+1M5Tj2ubdC1mLrtZqG/AgctJPx6duv9X2Ll4RruXCNOP8yxMzLxiPMy4/fD/y53zL7ltY2xFmICcr/fPPedU0xVnxa3h56PT9//Je8uDXfDzyem7f2UzFDgYcGr4/+Xu2eec6gYSYDO/3T39jF1NX4IVt4afj4EWyHnIc0I4Z+79kUtBswBFw/+vQAs41AwkwWZ+vXf68b+3J5ZveVAdpMCGVQOjcMi+XyEwnlDg7t9YEvIgTEsAgI9iPMzsytMAAAAASUVORK5CYII=" alt="+vQAs41AwkwWZ+vXf68b+3J5ZveVAdpMCGVQOjcM" /> 的规模

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAB0AAAASCAIAAAAop0KNAAABxklEQVR4nGP5//8/Aw0ACy0MHZzm/n51ZHpxznSOyWdm23JTx9x/70/OrOvefv/RgYuvgrCqINO9HMrhPatTnvQbbW3FrgDF3H9vDzRGhjftUZl/uvRaSc6Eg78c+g6s9r1UHZM/4wx78LwjS2PlwBqYOEWEgAGBx2IUc5mE7XNTtdr2Plo24Xrp4gu+bXp2LdmpV/3yNlx0SVMJnnZwYnSsBBNRHkILh5+PTt37w2+Z01fuKvrj+L9/DMyKKV0FNoKfdzD8Z+Xn5yDOUAxz/3+5e+Y5j1OyoygTw79Pty+9EXSPtxZkZPj9/MLtn1KBCpzEGotm7s/Hp+/9k/dS4ACyfzw8eZ9BIQbM/v7g5CNmJWMZdvLM/f/1zpnnHOr6EqzAOPx08/xrXi0tYWZgBL24cPOHpK8SF9HGopr789GZe3/lMsFO/Pnw1IP/8pEQpwOdy6RkIku8c1HM/f/17ulnHGpQ5946/4pXS0cEqAAYuje//vm3dckRhxxbUaD7GX4/3jxhys5r1w/cYnj3rj4t00DNMrkkTpsbu7mMwiH7foVA2EzisUf/xELYrGplV/+XIbuGVda3tNMXyJhPVDhQEQw1cwFY87NpUje2wgAAAABJRU5ErkJggg==" alt="+XIbuGVda3tNMXyJhPVDhQEQw1cwFY87NpUje2wg" /> 的规模

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAB0AAAASCAIAAAAop0KNAAACPklEQVR4nGP5//8/Aw0ACy0MHWzm/rjUERw1+x6bhCjXjzfveWzyJ/SkGPIxUWzu79c3/iRuu1iszsbw7/2+LG1nl69yd5Z4CDJSaC6HWlyZqiIbiMkkaBbuwDdzz/ob3z0suXCY++/tgcbI8KY9KvNPl14ryZlw8JdD34HVvpeqY/JnnGEPnndkaawcSAOrrJMzkq6//xnYuFgZkU1CNZdJ2D43Vatt76NlE66XLr7g26Zn15KdetUvb8NFlzSV4GkHJ0bHSqAEIzBMXpy/+lnE1V+dE7e5DAw/H52694ffMqev3FX0x/F//xiYFVO6CmwEP+9g+M/Kz8+BZigDw5ezU6c9d+ust+FFFUc19/+Xu2ee8zglO4oyMfz7dPvSG0H3eGtgdPx+fuH2T6lABVQ3Mfx9ta007XDAyh0J8ujxhMr/+fj0vX/yXgocQPaPhyfvMyjEgNnfH5x8xKxkLMOOYujO8tBegb4dLS4iGN5ANff/1ztnnnOo60uwAmPj083zr3m1tISZQWF44eYPSV8lRHz/frw2P2GFev+GPCNeRgxD0c39+ejMvb9ymWAn/nx46sF/+UiI04HOZVIykYU69/ejJbFOrSy5zUrPDm59BhZiFtCys1biZsRq7v+vd08/41CDOvfW+Ve8WjoiQAXA0L359c+/rUuOOOTYijIzfL+2csPdGz8LQpci9Gq03bhYqc6G1VxG4ZB9v0IgbCbx2KN/YiFsVrWyq//LEOr4PDb/IFQIDqpyZwDNBQDkruJDDS+i8wAAAABJRU5ErkJggg==" alt="IFQIDqpyZwDNBQDkruJDDS+i8wAAAABJRU5ErkJg" /> 的规模

1

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACwAAAASCAIAAACvlquLAAADU0lEQVR4nGP5//8/w0ADloF2AAgMS0f8fnVkenHOdI7JZ2bbckPF/n+5PKcgd+4dNu6fr39p58yYmKTNzUhVR/z//eMvCwcL0NB/70/OrOvefv/RgYuvgpAUfDxQ5FX1tu/y3lCJ/w/nuOl5FqtcmW7Ph+QMChzx9935lT0tM246zlmeo8YGFOBQDu9ZnfKk32hrK5Ib3uxqX/zRboO7BDOQJxdcYJsf3rarxS5EBOEKFEf8e7OvISqieY/G4otVtyvz+rfeZrFt27+zUp8T1frfr08v626bfZrXq6B1a4sGLxNYlIlTRAgoh+bUbze3n/shVSjHAeYxciubSv+Ysv3GtxAbbrgaFEcwiTjmJKi37X06v3F/auepx7VNuhYzl90s1DfggKr49fL44s72hVfEA4p7d3UqcaFELVbw88Xdtww8orzMEC4znwQvw5s7L34yMOBwBAPDj0en7v8Vdi6e0e4lwvTjPAsTM68YD1T/73tzI5xrPyQtWri7V4adsPVg8O/XV6B9zGzMUPWMLGxAK39+/fUP6Gfsjvj/5c75l9y2MbYiQAX/v94/95xTTVecFSLJqhg9Ye63tp6W7Mr7ZaXx1pJsRDiCiY2bnYHh688/0CLx/++ffxgYeLjZmJAUoTri56PT9//Je8uDQ//nk9N3/8pmKMCigoGRQ9Ypd7pj2tNDc9uTnZrlwkorU53kOfGHCYekmijDwZef/wLDA8j98+nZRwYRAwl2ZDUojvj/5e7Z55zqBhJgv3+7e/oZu5q+BCuqqYzs0vZZU+xTnh+Z357p2Cwe0dqTay3MjMsRnOoeRpwrzj38zqDFBrLh9qmn7Abu6lw4HfHzMTAg5DzkOSGcM/f+yKUgAgIVsEnapE/alvjy9J7bv/DVPozCrpVxgsHTdzx3C5f892DNhKNCsRvdRXAWVv+/AgOCQ81AEuz3r/dOP/739sTyLQ+qgxRA0f/jQpNPzLInf1AtYVVIWuFsIwk05/fjzROm7Lx2/cAthnfv6tMyDdQsk0vitLn57Hq2tOXm+LssEPz98pt6/85+R37UKER2BKNwyL5fITCeUODu3yhe5DCo23OlDrefWWV9Szt9gYz56IHBo5c2/1Aabp3DsgIjCwwKRwAAXChCGmbpkzsAAAAASUVORK5CYII=" alt="1Aabp3DsgIjCwwKRwAAXChCGmbpkzsAAAAASUVOR" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADkAAAASCAIAAABuEeEnAAADwklEQVR4nGP5//8/wxABLAPtABLACHHr71dHphfnTOeYfGa2LTcV9P7/cnlOQe7cO2zcP1//0s6ZMTFJm5uRcrf+e39yZl339vuPDlx8FUSUjv+/f/xl4WBhxKn3/8cDRV5Vb/su7w2V+P9wjpueZ7HKlen2fEiuJTNcOZTDe1anPOk32tpKSOnfd+dX9rTMuOk4Z3mOGhsuvf/f7Gpf/NFug7sEM5AnF1xgmx/etqvFLkQE4VgUt/57e6AxMrxpj8r806XXSnImHPzl0Hdgte+l6pj8GWfYg+cdWRorB9bAxCkiBIxIAq78/fr0su622ad5vQpat7Zo8DIx4Nb77eb2cz+kCuU4wDxGbmVT6R9Ttt/4FmKDSF4obmUSts9N1Wrb+2jZhOuliy/4tunZtWSnXvXL23DRJU0leNrBidGxEkyEAhIIfr08vrizfeEV8YDi3l2dSlyMBHX8fHH3LQOPKC8zhMvMJ8HL8ObOi58MDDjcCtTy6NS9P/yWOX3lrqI/jv/7x8CsmNJVYCP4eQfDf1Z+fg4iHPr73twI59oPSYsW7u6VYSfsSjD49+sr0FnMbMxQ9YwsbECX/fz66x8wBLG79f+Xu2ee8zglO4oyMfz7dPvSG0H3eGtBRobfzy/c/ikVqMBJhLWsitET5n5r62nJrrxfVhpvLclGhCYmNm52BoavP/9AK6b/v3/+YWDg4WZDDhxUt/58fPreP3kvBVCq+fHw5H0GhRgw+/uDk4+YlYxl2ImwloGRQ9Ypd7pj2tNDc9uTnZrlwkorU53kOfGHMIekmijDwZef/wJDF8j98+nZRwYRAwkUC1Hc+v/rnTPPOdT1JViBsfLp5vnXvFpawkCtv19cuPlD0leJixinwlzMLm2fNcU+5fmR+e2Zjs3iEa09udbCzLiUc6p7GHGuOPfwO4MWGyh+b596ym7gro5iI4pbfz46c++vXCY4KH8+PPXgv3wkJIiBwcqkZCJLVLCiAjZJm/RJ2xJfnt5z+xe+hgejsGtlnGDw9B3P3cIl/z1YM+GoUOxGdxGcdcH/r3dPP+NQgwbrrfOveLV0RIAKgKn15tc//7YuOeKQYysKCprfjzdPmLLz2vUDtxjevatPyzRQs0wuidMGZ9kfF5p8YpY9+YPqFlaFpBXONpIsuPXy2fVsacvN8XdZIPj75Tf1/p39jvyo6QbZrYzCIft+hUDYTOKxR//EQu1RK7v6vwzFZlnf0k5fIGM+ZghxGNTtuVKHOwRx6mXk0UubfygNt84R0nahOxhKbgUAaaOTR5uis6kAAAAASUVORK5CYII=" alt="EQu1RK7v6vwzFZlnf0k5fIGM+ZghxGNTtuVKHOwR" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADkAAAASCAIAAABuEeEnAAAEgklEQVR4nGP5//8/wxABLAPtABLAsHfrj0sdwVGz77FJiHL9ePOexyZ/Qk+KIR8TaYb8fnVkenHOdI7JZ2bbckPF/n+5PKcgd+4dNu6fr39p58yYmKTNzUiZW3+/vvEncdvFYnU2hn/v92VpO7t8lbuzxEOQEbeW/79//GXhYIGo+Pf+5My67u33Hx24+CoISc3HA0VeVW/7Lu8Nlfj/cI6bnmexypXp9nwwY8lyK4daXJmqIhuIySRoFu7AN3PP+hvfPSy5sCn+++78yp6WGTcd5yzPUWODGqAc3rM65Um/0dZWJKe+2dW++KPdBncJZiBPLrjANj+8bVeLXYgIIxa3/nt7oDEyvGmPyvzTpddKciYc/OXQd2C176XqmPwZZ9iD5x1ZGisH0sAq6+SMpOvvfwY2LlbMQP39+vSy7rbZp3m9Clq3tmjwwhMJE6eIEFAaTfm3m9vP/ZAqlOMA8xi5lU2lf0zZfuNbiA03FrcyCdvnpmq17X20bML10sUXfNv07FqyU6/65W246JKmEjzt4MToWAm0ZPn7xfmrn0Vc/dU5kQR/vTy+uLN94RXxgOLeXZ1KXHgSBwL8fHH3LQOPKC8zhMvMJ8HL8ObOi58MDNjcClT/6NS9P/yWOX3lrqI/jv/7x8CsmNJVYCP4eQfDf1Z+fg6M/PPl7NRpz90662144Y6/NzfCufZD0qKFu3tl2IlyJRj8+/UV6CxmNmaoFkYWNqDjfn799Q8YiFjc+v/L3TPPeZySHUWZGP59un3pjaB7vDUwy/x+fuH2T6lABU5U4/++2laadjhg5Y4EeYQ5rIrRE+Z+a+tpya68X1Yaby3JRpxbmdi42RkYvv78A62b/v/++YeBgYebDR4+qG79+fj0vX/yXgqgJPPj4cn7DAoxYPb3BycfMSsZy7CjOHRneWivQN+OFhcRlOBm5JB1yp3umPb00Nz2ZKdmubDSylQneU6CIcwhqSbKcPDl57/A0AVy/3x69pFBxEACYSeKW/9/vXPmOYe6vgQrMEo+3Tz/mldLS5gZlCYv3Pwh6auEyOe/H6/NT1ih3r8hz4gXuyMY2aXts6bYpzw/Mr8907FZPKK1J9damBmPWznVPYw4V5x7+J1Biw0UxbdPPWU3cFdHWIri1p+Pztz7K5cJDsqfD089+C8fCQliYLAyKZnIQr34+9GSWKdWltxmpWcHtz4DCzELaNlZK3FjOptN0iZ90rbEl6f33P5FoOHBKOxaGScYPH3Hc7dwyX8P1kw4KhS70V0Ee13w/+vd08841KDBeuv8K14tHRGgAmBqvfn1z7+tS4445NiKMjN8v7Zyw90bPwtClyL0arTduFipDkqaPy40+cQse/IH1SGsCkkrnG0kIdb9frx5wpSd164fuMXw7l19WqaBmmVySZw2N59dz5a23Bx/lwWCv19+U+/f2e/Ij+R9ZLcyCofs+xUCYTOJxx79Ewu1R63s6v8yhDo+j80/cIcRh0Hdnit1eEOQVda3tNMXyJiPJsHIo5c2/1AaDm3Dvu0yQGAouRUAi3vCIaA21BYAAAAASUVORK5CYII=" alt="1AaDm3Dvu0yQGAouRUAi3vCIaA21BYAAAAASUVOR" />

2

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACwAAAASCAIAAACvlquLAAADwElEQVR4nGP5//8/w0ADloF2AAgMM0f8uNQRHDX7HpuEKNePN+95bPIn9KQY8jEBZf5/uTynIHfuHTbun69/aefMmJikzc1IVUf8//3jLwsHCyPD79c3/iRuu1iszsbw7/2+LG1nl69yd5Z4CDJ8PFDkVfW27/LeUIn/D+e46XkWq1yZbs+H5AwKHPH33fmVPS0zbjrOWZ6jxsbAoRZXpqrIBpJhEjQLd+CbuWf9je8eFl93tS/+aLfBXYIZKCMXXGCbH962q8UuRAThChRH/HuzryEqonmPxuKLVbcr8/q33maxbdu/s1KfE9X6369PL+tum32a16ugdWuLBi8ozBlYZZ2ckYz6+5+BjYuVkeHbze3nfkgVynGAhRm5lU2lf0zZfuNbiA03dkcwiTjmJKi37X06v3F/auepx7VNuhYzl90s1DfggKr49fL44s72hVfEA4p7d3UqcaFELZIrX5y/+lnE1V+dk+Hni7tvGXhEeZkhMsx8ErwMb+68+MnAgMMRwNT16NT9v8LOxTPavUSYfpxnYWLmFeOB6v99b26Ec+2HpEULd/fKsOOwHgy+nJ067blbZ70NL8O/F1+B9jGzMUPVM7KwAa38+fXXP6CfsTvi/5c7519y28bYigAV/P96/9xzTjVdcVaIJKti9IS539p6WrIr75eVxltLsmF1wd9X20rTDges3JEgDzKcjZudgeHrzz/QIvH/759/GBh4uNmYkLSgOuLno9P3/8l7y4ND/+eT03f/ymYowKKCgZFD1il3umPa00Nz25OdmuXCSitTneQ5kcPk76ud5aG9An07WlxEINZwSKqJMhx8+fkvMDyA3D+fnn1kEDGQYEe2FsUR/7/cPfucU91AAuz3b3dPP2NX05dgRfUpI7u0fdYU+5TnR+a3Zzo2i0e09uRaC4Ms+P14bX7CCvX+DXlGvHCXcap7GHGuOPfwO4MWG8iG26eeshu4q3PhdMTPx8CAkPOQ54Rwztz7I5eCCAhUwCZpkz5pW+LL03tu/wIF9e9HS2KdWllym5WeHdz6DKyEWUDLzlpJ2LUyTjB4+o7nbuGS/x6smXBUKHajuwjOwur/V2BAcKgZSIL9/vXe6cf/3p5YvuVBdZACKPp/XGjyiVn25A+qY1gVklY420iyfL+2csPdGz8LQpci5DTablysVOez69nSlpvj77JA8PfLb+r9O/sd+VGTNbIjGIVD9v0KgfGEAnf/RqlgOQzq9lypwx4uDAx8Hpt/4KiPGXn00uYfSsOlc9hVYBSAQeEIABwjbswTRjkQAAAAAElFTkSuQmCC" alt="4KiPGXn00uYfSsOlc9hVYBSAQeEIABwjbswTRjkQ" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADkAAAASCAIAAABuEeEnAAADwklEQVR4nGP5//8/wxABLAPtABLACHHr71dHphfnTOeYfGa2LTcV9P7/cnlOQe7cO2zcP1//0s6ZMTFJm5uRcrf+e39yZl339vuPDlx8FUSUjv+/f/xl4WBhxKn3/8cDRV5Vb/su7w2V+P9wjpueZ7HKlen2fEiuJTNcOZTDe1anPOk32tpKSOnfd+dX9rTMuOk4Z3mOGhsuvf/f7Gpf/NFug7sEM5AnF1xgmx/etqvFLkQE4VgUt/57e6AxMrxpj8r806XXSnImHPzl0Hdgte+l6pj8GWfYg+cdWRorB9bAxCkiBIxIAq78/fr0su622ad5vQpat7Zo8DIx4Nb77eb2cz+kCuU4wDxGbmVT6R9Ttt/4FmKDSF4obmUSts9N1Wrb+2jZhOuliy/4tunZtWSnXvXL23DRJU0leNrBidGxEkyEAhIIfr08vrizfeEV8YDi3l2dSlyMBHX8fHH3LQOPKC8zhMvMJ8HL8ObOi58MDDjcCtTy6NS9P/yWOX3lrqI/jv/7x8CsmNJVYCP4eQfDf1Z+fg4iHPr73twI59oPSYsW7u6VYSfsSjD49+sr0FnMbMxQ9YwsbECX/fz66x8wBLG79f+Xu2ee8zglO4oyMfz7dPvSG0H3eGtBRobfzy/c/ikVqMBJhLWsitET5n5r62nJrrxfVhpvLclGhCYmNm52BoavP/9AK6b/v3/+YWDg4WZDDhxUt/58fPreP3kvBVCq+fHw5H0GhRgw+/uDk4+YlYxl2ImwloGRQ9Ypd7pj2tNDc9uTnZrlwkorU53kOfGHMIekmijDwZef/wJDF8j98+nZRwYRAwkUC1Hc+v/rnTPPOdT1JViBsfLp5vnXvFpawkCtv19cuPlD0leJixinwlzMLm2fNcU+5fmR+e2Zjs3iEa09udbCzLiUc6p7GHGuOPfwO4MWGyh+b596ym7gro5iI4pbfz46c++vXCY4KH8+PPXgv3wkJIiBwcqkZCJLVLCiAjZJm/RJ2xJfnt5z+xe+hgejsGtlnGDw9B3P3cIl/z1YM+GoUOxGdxGcdcH/r3dPP+NQgwbrrfOveLV0RIAKgKn15tc//7YuOeKQYysKCprfjzdPmLLz2vUDtxjevatPyzRQs0wuidMGZ9kfF5p8YpY9+YPqFlaFpBXONpIsuPXy2fVsacvN8XdZIPj75Tf1/p39jvyo6QbZrYzCIft+hUDYTOKxR//EQu1RK7v6vwzFZlnf0k5fIGM+ZghxGNTtuVKHOwRx6mXk0UubfygNt84R0nahOxhKbgUAaaOTR5uis6kAAAAASUVORK5CYII=" alt="EQu1RK7v6vwzFZlnf0k5fIGM+ZghxGNTtuVKHOwR" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADkAAAASCAIAAABuEeEnAAAEgklEQVR4nGP5//8/wxABLAPtABLAsHfrj0sdwVGz77FJiHL9ePOexyZ/Qk+KIR8TaYb8fnVkenHOdI7JZ2bbckPF/n+5PKcgd+4dNu6fr39p58yYmKTNzUiZW3+/vvEncdvFYnU2hn/v92VpO7t8lbuzxEOQEbeW/79//GXhYIGo+Pf+5My67u33Hx24+CoISc3HA0VeVW/7Lu8Nlfj/cI6bnmexypXp9nwwY8lyK4daXJmqIhuIySRoFu7AN3PP+hvfPSy5sCn+++78yp6WGTcd5yzPUWODGqAc3rM65Um/0dZWJKe+2dW++KPdBncJZiBPLrjANj+8bVeLXYgIIxa3/nt7oDEyvGmPyvzTpddKciYc/OXQd2C176XqmPwZZ9iD5x1ZGisH0sAq6+SMpOvvfwY2LlbMQP39+vSy7rbZp3m9Clq3tmjwwhMJE6eIEFAaTfm3m9vP/ZAqlOMA8xi5lU2lf0zZfuNbiA03FrcyCdvnpmq17X20bML10sUXfNv07FqyU6/65W246JKmEjzt4MToWAm0ZPn7xfmrn0Vc/dU5kQR/vTy+uLN94RXxgOLeXZ1KXHgSBwL8fHH3LQOPKC8zhMvMJ8HL8ObOi58MDNjcClT/6NS9P/yWOX3lrqI/jv/7x8CsmNJVYCP4eQfDf1Z+fg6M/PPl7NRpz90662144Y6/NzfCufZD0qKFu3tl2IlyJRj8+/UV6CxmNmaoFkYWNqDjfn799Q8YiFjc+v/L3TPPeZySHUWZGP59un3pjaB7vDUwy/x+fuH2T6lABU5U4/++2laadjhg5Y4EeYQ5rIrRE+Z+a+tpya68X1Yaby3JRpxbmdi42RkYvv78A62b/v/++YeBgYebDR4+qG79+fj0vX/yXgqgJPPj4cn7DAoxYPb3BycfMSsZy7CjOHRneWivQN+OFhcRlOBm5JB1yp3umPb00Nz2ZKdmubDSylQneU6CIcwhqSbKcPDl57/A0AVy/3x69pFBxEACYSeKW/9/vXPmOYe6vgQrMEo+3Tz/mldLS5gZlCYv3Pwh6auEyOe/H6/NT1ih3r8hz4gXuyMY2aXts6bYpzw/Mr8907FZPKK1J9damBmPWznVPYw4V5x7+J1Biw0UxbdPPWU3cFdHWIri1p+Pztz7K5cJDsqfD089+C8fCQliYLAyKZnIQr34+9GSWKdWltxmpWcHtz4DCzELaNlZK3FjOptN0iZ90rbEl6f33P5FoOHBKOxaGScYPH3Hc7dwyX8P1kw4KhS70V0Ee13w/+vd08841KDBeuv8K14tHRGgAmBqvfn1z7+tS4445NiKMjN8v7Zyw90bPwtClyL0arTduFipDkqaPy40+cQse/IH1SGsCkkrnG0kIdb9frx5wpSd164fuMXw7l19WqaBmmVySZw2N59dz5a23Bx/lwWCv19+U+/f2e/Ij+R9ZLcyCofs+xUCYTOJxx79Ewu1R63s6v8yhDo+j80/cIcRh0Hdnit1eEOQVda3tNMXyJiPJsHIo5c2/1AaDm3Dvu0yQGAouRUAi3vCIaA21BYAAAAASUVORK5CYII=" alt="1AaDm3Dvu0yQGAouRUAi3vCIaA21BYAAAAASUVOR" />

3

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACwAAAASCAIAAACvlquLAAAD5UlEQVR4nGP5//8/w0ADloF2AAgMM0f8vNYXHDzpJrukJM/v169ZjNN7J+ZbCzMzMPz7eHpqbv7Mq2zSQn9fPvurnzlpUpYJPxM1HfH/94+/LBwsjAx/3t7+FbHxcr0+B8P/T0eLdW08UpXvr/UX+X6q2j/vQMSJ633m3P8/HyvQsvYpN7o7w4qbKo74++78yp6WGTcd5yzPUWNjYJX1zYxQ5wDJMPIZBDgI9u/aeee7v/DnO+eeM8gaK3KBJHg1bJUYJp2/+emfFTciLFAc8e/NvoaoiOY9GosvVt2uzOvfepvFtm3/zkp9TlTrf78+vay7bfZpXq+C1q0tGrxg49gUvAIR4fPn518GHjFeZgZGIcsoW56WHSdfR/iK/X9+YO11LqsqG2Hk2EB1BJOIY06Cetvep/Mb96d2nnpc26RrMXPZzUJ9Aw6oil8vjy/ubF94RTyguHdXpxIXI9Yw+vVw87R9zG6t8WrsQJ5yxvI5hwz95JT0VH5fvfo3dOW5HFU2FPVo0fHj0an7f4Wdi2e0e4kw/TjPwsTMK8bDDPX/vbkRzrUfkhYt3N0rw47V+n+vN6d4l+27fe+LRubsJTEKrAygBNsfkn45/sCzDnuh/y+25ViEB/XrHirVZMfliP9f7px/yW0bYysCDK7/X++fe86ppivOCpFkVYyeMPdbW09LduX9stJ4a0lU74CDUtR33ilfhv/f767OdtIxPr77eLfhpe6OE7JVi62EQH6RcC1Ml9Ho6jmdNdcGkTJRHfHz0en7/+S95cGh//PJ6bt/ZTMUYFHBwMgh65Q73THt6aG57clOzXJhpZWpTvKcmGHCyKkcWJndqFbXcaR67rsb7xgEZASgFrEIKwozvLl2/8t/G264RhRH/P9y9+xzTnUDCbDfv909/YxdTV+CFc0Gdmn7rCn2Kc+PzG/PdGwWj2jtyQWWB78f79r2xcZfkwuujpHh768/jBzCIuwMzz58/8fAAAqKv1/efGXgkBXhQHY6iiN+PgYGhJyHPCeEc+beH7kURECgAjZJm/RJ2xJfnt5z+xeo9vnzcu+UpTwu/eD8///zhSULr/N515vz8jIluPPFrtz9NDlJjoXh1/1NS67xe9aZ8CKbheyI/1+BAcGhZiAJ9vvXe6cf/3t7YvmWB9VBCqDo/3GhySdm2ZM/qI5hVUha4WwjycIqpitxKN7EVEpGkPXXh1efhZzmHm4NkWBmZAiYt6Uxp8zffqW0wN/XT76pdmyf5C+KM4syCofs+xUC4wkF7v6NUsFyGNTtuVKHPVyABsnFLD4bg02GWdi2dPnxUlwaGYZdBUYBGBSOAADz13/Aw5V9FQAAAABJRU5ErkJggg==" alt="Aw5V9FQAAAABJRU5ErkJggg==" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADEAAAASCAIAAAB9xqHTAAADc0lEQVR4nGP5//8/wyADLAPtACxgmLnp96sj04tzpnNMPjPblptoXf+ez7eUSjqFEOCL2Pd0uSMPxW769/7kzLru7fcfHbj4KogoHf9///jLwsHCCGQy8tnUr6m2gHqDkUPGgBNVLZnhxKEc3rM65Um/0dZWQkr/vju/sqdlxk3HOctz1NhAIqxiJi4eHvw4daC46d/bA42R4U17VOafLr1WkjPh4C+HvgOrfS9Vx+TPOMMePO/I0lg5sAYmThEhYOQRcM3v16eXdbfNPs3rVdC6tUWDl4mwXzHdxCRsn5uq1bb30bIJ10sXX/Bt07NryU696pe34aJLmkrwtIMTo2MliDH518vjizvbF14RDyju3dWpxMWIIvvlRH247/T/Xz68/y1kFJRfm+MizYbTTQwMPx+duveH3zKnr9xV9Mfxf/8YmBVTugpsBD/vYPjPys/PQYSDft+bG+Fc+yFp0cLdvTLsjOjSTBIxu+5Es3OyMjL8/3Z7eaqtq+Wdg1em2vEhVKK66f+Xu2ee8zglO4oyMfz7dPvSG0H3eGtBRobfzy/c/ikVqMCJbgMWwKoYPWHut7aeluzK+2Wl8daSbKjyjCwcUGMYuVSDK1Lrlk2cerrLzhmR81Dd9PPx6Xv/5L0UOIDsHw9P3mdQiAGzvz84+YhZyViGnQg3AXOSrFPudMe0p4fmtic7NcuFlVamOslzYoQY2HoBaX6Gz8/e/PjPwANXgOKm/1/vnHnOoa4vwQpM759unn/Nq6UlzAyMjhcXbv6Q9FXiIsZJMJexS9tnTbFPeX5kfnumY7N4RGtPrrUw8/83u1rWyJRlaEG89+fD048MgtoSKC5GcdPPR2fu/ZXLBAfNz4enHvyXj4QEGTCYmJRMZIkKJlTAJmmTPmlb4svTe27/AlesjB+Or7rzPEVLgQWUzw9NX/RQJWW5CUqZi+ym/1/vnn7GoQYNplvnX/Fq6YgAFQBT082vf/5tXXLEIcdWFBhuDL8fb54wZee16wduMbx7V5+WaaBmmVwSpw02+ceFJp+YZU/+oLqNVSFphbONJAsjp4LB/zoXw6UKkhw/3776qZi06UCVKWo1gOwmRuGQfb9CIGwm8dijf2Kh5qmVXf1fhmKDrG9ppy+QMR8zZDgM6vZcqcMZcFxmbftvtOGURnfTYAGjbiIOAADl400rRdD/IwAAAABJRU5ErkJggg==" alt="IwAAAABJRU5ErkJggg==" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADIAAAASCAIAAACW8RrQAAAD4UlEQVR4nGP5//8/w+ADLAPtAOxgODnrx6WO4KjZ99gkRLl+vHnPY5M/oSfFkI+JWO3/ns+3lEo6hRDgi9j3dLkjD6XO+v36xp/EbReL1dkY/r3fl6Xt7PJV7s4SD0FG3Fr+//7xl4WDBaqCkc+mfk21BTeUxyFjwImqnCxncajFlakqsoGYTIJm4Q58M/esv/Hdw5ILm+K/786v7GmZcdNxzvIcNTaoIKuYiYuHBz9OG1Cc9e/tgcbI8KY9KvNPl14ryZlw8JdD34HVvpeqY/JnnGEPnndkaawcSAOrrJMzkq6//xnYuFgxg+r369PLuttmn+b1Kmjd2qLBS3QsozmLSdg+N1Wrbe+jZROuly6+4NumZ9eSnXrVL2/DRZc0leBpBydGx0qgGf77xfmrn0Vc/dWRo+HXy+OLO9sXXhEPKO7d1anEheHkLyfqw32n///y4f1vIaOg/NocF2k2ZHm0SPz56NS9P/yWOX3lrqI/jv/7x8CsmNJVYCP4eQfDf1Z+fg4MD385O3Xac7fOehteuDvvzY1wrv2QtGjh7l4ZdmzJjUkiZtedaHZOYAD//3Z7eaqtq+Wdg1em2vEhFKM66/+Xu2ee8zglO4oyMfz7dPvSG0H3eGtgSv79/MLtn1KBCmgJ8++rbaVphwNW7kiQR5jDqhg9Ye63tp6W7Mr7ZaXx1pJsDOiAkYUDahIjl2pwRWrdsolTT3fZOSPyIqqzfj4+fe+fvJcCB5D94+HJ+wwKMWD29wcnHzErGcuwo7hpZ3lor0DfjhYXEZRAZOSQdcqd7pj29NDc9mSnZrmw0spUJ3lOXNmURUCan+Hzszc//jPwwNWgOOv/1ztnnnOo60uwAhPyp5vnX/NqaQkzg9LPhZs/JH2VEDnt9+O1+Qkr1Ps35BnxYrePkV3aPmuKfcrzI/PbMx2bxSNae3KtQYYx/H+zq2WNTFmGFsSTfz48/cggqC2B4m4UZ/18dObeX7lMcAD9fHjqwX/5SEjAAQOLSclEFhpYvx8tiXVqZcltVnp2cOszsBCzgJadtRI3pgvZJG3SJ21LfHl6z+1fsMqX8cPxVXeep2gpsIAy/6Hpix6qpCw34UYJQpTAunv6GYcaNLBunX/Fq6UjAlQATFk3v/75t3XJEYccW1Fmhu/XVm64e+NnQehShF6NthsXK9VByejHhSafmGVP/qA6j1UhaYWzjSTIOkZOBYP/dS6GSxUkOX6+ffVTMWnTgSpTFFehOItROGTfrxAIm0k89uifWKiRamVX/5ch1PF5bP6Bu9nBYVC350odTmkg4DJr23+jDZ+KYVVV0x4MUmcBAOIPfAXb0pRLAAAAAElFTkSuQmCC" alt="5ch1PF5bP6Bu9nBYVC350odTmkg4DJr23+jDZ+KY" />

4

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACwAAAASCAIAAACvlquLAAAD5UlEQVR4nGP5//8/w0ADloF2AAgMM0f8vNYXHDzpJrukJM/v169ZjNN7J+ZbCzMzMPz7eHpqbv7Mq2zSQn9fPvurnzlpUpYJPxM1HfH/94+/LBwsjAx/3t7+FbHxcr0+B8P/T0eLdW08UpXvr/UX+X6q2j/vQMSJ633m3P8/HyvQsvYpN7o7w4qbKo74++78yp6WGTcd5yzPUWNjYJX1zYxQ5wDJMPIZBDgI9u/aeee7v/DnO+eeM8gaK3KBJHg1bJUYJp2/+emfFTciLFAc8e/NvoaoiOY9GosvVt2uzOvfepvFtm3/zkp9TlTrf78+vay7bfZpXq+C1q0tGrxg49gUvAIR4fPn518GHjFeZgZGIcsoW56WHSdfR/iK/X9+YO11LqsqG2Hk2EB1BJOIY06Cetvep/Mb96d2nnpc26RrMXPZzUJ9Aw6oil8vjy/ubF94RTyguHdXpxIXI9Yw+vVw87R9zG6t8WrsQJ5yxvI5hwz95JT0VH5fvfo3dOW5HFU2FPVo0fHj0an7f4Wdi2e0e4kw/TjPwsTMK8bDDPX/vbkRzrUfkhYt3N0rw47V+n+vN6d4l+27fe+LRubsJTEKrAygBNsfkn45/sCzDnuh/y+25ViEB/XrHirVZMfliP9f7px/yW0bYysCDK7/X++fe86ppivOCpFkVYyeMPdbW09LduX9stJ4a0lU74CDUtR33ilfhv/f767OdtIxPr77eLfhpe6OE7JVi62EQH6RcC1Ml9Ho6jmdNdcGkTJRHfHz0en7/+S95cGh//PJ6bt/ZTMUYFHBwMgh65Q73THt6aG57clOzXJhpZWpTvKcmGHCyKkcWJndqFbXcaR67rsb7xgEZASgFrEIKwozvLl2/8t/G264RhRH/P9y9+xzTnUDCbDfv909/YxdTV+CFc0Gdmn7rCn2Kc+PzG/PdGwWj2jtyQWWB78f79r2xcZfkwuujpHh768/jBzCIuwMzz58/8fAAAqKv1/efGXgkBXhQHY6iiN+PgYGhJyHPCeEc+beH7kURECgAjZJm/RJ2xJfnt5z+xeo9vnzcu+UpTwu/eD8///zhSULr/N515vz8jIluPPFrtz9NDlJjoXh1/1NS67xe9aZ8CKbheyI/1+BAcGhZiAJ9vvXe6cf/3t7YvmWB9VBCqDo/3GhySdm2ZM/qI5hVUha4WwjycIqpitxKN7EVEpGkPXXh1efhZzmHm4NkWBmZAiYt6Uxp8zffqW0wN/XT76pdmyf5C+KM4syCofs+xUC4wkF7v6NUsFyGNTtuVKHPVyABsnFLD4bg02GWdi2dPnxUlwaGYZdBUYBGBSOAADz13/Aw5V9FQAAAABJRU5ErkJggg==" alt="Aw5V9FQAAAABJRU5ErkJggg==" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADEAAAASCAIAAAB9xqHTAAADc0lEQVR4nGP5//8/wyADLAPtACxgmLnp96sj04tzpnNMPjPblptoXf+ez7eUSjqFEOCL2Pd0uSMPxW769/7kzLru7fcfHbj4KogoHf9///jLwsHCCGQy8tnUr6m2gHqDkUPGgBNVLZnhxKEc3rM65Um/0dZWQkr/vju/sqdlxk3HOctz1NhAIqxiJi4eHvw4daC46d/bA42R4U17VOafLr1WkjPh4C+HvgOrfS9Vx+TPOMMePO/I0lg5sAYmThEhYOQRcM3v16eXdbfNPs3rVdC6tUWDl4mwXzHdxCRsn5uq1bb30bIJ10sXX/Bt07NryU696pe34aJLmkrwtIMTo2MliDH518vjizvbF14RDyju3dWpxMWIIvvlRH247/T/Xz68/y1kFJRfm+MizYbTTQwMPx+duveH3zKnr9xV9Mfxf/8YmBVTugpsBD/vYPjPys/PQYSDft+bG+Fc+yFp0cLdvTLsjOjSTBIxu+5Es3OyMjL8/3Z7eaqtq+Wdg1em2vEhVKK66f+Xu2ee8zglO4oyMfz7dPvSG0H3eGtBRobfzy/c/ikVqMCJbgMWwKoYPWHut7aeluzK+2Wl8daSbKjyjCwcUGMYuVSDK1Lrlk2cerrLzhmR81Dd9PPx6Xv/5L0UOIDsHw9P3mdQiAGzvz84+YhZyViGnQg3AXOSrFPudMe0p4fmtic7NcuFlVamOslzYoQY2HoBaX6Gz8/e/PjPwANXgOKm/1/vnHnOoa4vwQpM759unn/Nq6UlzAyMjhcXbv6Q9FXiIsZJMJexS9tnTbFPeX5kfnumY7N4RGtPrrUw8/83u1rWyJRlaEG89+fD048MgtoSKC5GcdPPR2fu/ZXLBAfNz4enHvyXj4QEGTCYmJRMZIkKJlTAJmmTPmlb4svTe27/AlesjB+Or7rzPEVLgQWUzw9NX/RQJWW5CUqZi+ym/1/vnn7GoQYNplvnX/Fq6YgAFQBT082vf/5tXXLEIcdWFBhuDL8fb54wZee16wduMbx7V5+WaaBmmVwSpw02+ceFJp+YZU/+oLqNVSFphbONJAsjp4LB/zoXw6UKkhw/3776qZi06UCVKWo1gOwmRuGQfb9CIGwm8dijf2Kh5qmVXf1fhmKDrG9ppy+QMR8zZDgM6vZcqcMZcFxmbftvtOGURnfTYAGjbiIOAADl400rRdD/IwAAAABJRU5ErkJggg==" alt="IwAAAABJRU5ErkJggg==" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADIAAAASCAIAAACW8RrQAAAD4UlEQVR4nGP5//8/w+ADLAPtAOxgODnrx6WO4KjZ99gkRLl+vHnPY5M/oSfFkI+JWO3/ns+3lEo6hRDgi9j3dLkjD6XO+v36xp/EbReL1dkY/r3fl6Xt7PJV7s4SD0FG3Fr+//7xl4WDBaqCkc+mfk21BTeUxyFjwImqnCxncajFlakqsoGYTIJm4Q58M/esv/Hdw5ILm+K/786v7GmZcdNxzvIcNTaoIKuYiYuHBz9OG1Cc9e/tgcbI8KY9KvNPl14ryZlw8JdD34HVvpeqY/JnnGEPnndkaawcSAOrrJMzkq6//xnYuFgxg+r369PLuttmn+b1Kmjd2qLBS3QsozmLSdg+N1Wrbe+jZROuly6+4NumZ9eSnXrVL2/DRZc0leBpBydGx0qgGf77xfmrn0Vc/dWRo+HXy+OLO9sXXhEPKO7d1anEheHkLyfqw32n///y4f1vIaOg/NocF2k2ZHm0SPz56NS9P/yWOX3lrqI/jv/7x8CsmNJVYCP4eQfDf1Z+fg4MD385O3Xac7fOehteuDvvzY1wrv2QtGjh7l4ZdmzJjUkiZtedaHZOYAD//3Z7eaqtq+Wdg1em2vEhFKM66/+Xu2ee8zglO4oyMfz7dPvSG0H3eGtgSv79/MLtn1KBCmgJ8++rbaVphwNW7kiQR5jDqhg9Ye63tp6W7Mr7ZaXx1pJsDOiAkYUDahIjl2pwRWrdsolTT3fZOSPyIqqzfj4+fe+fvJcCB5D94+HJ+wwKMWD29wcnHzErGcuwo7hpZ3lor0DfjhYXEZRAZOSQdcqd7pj29NDc9mSnZrmw0spUJ3lOXNmURUCan+Hzszc//jPwwNWgOOv/1ztnnnOo60uwAhPyp5vnX/NqaQkzg9LPhZs/JH2VEDnt9+O1+Qkr1Ps35BnxYrePkV3aPmuKfcrzI/PbMx2bxSNae3KtQYYx/H+zq2WNTFmGFsSTfz48/cggqC2B4m4UZ/18dObeX7lMcAD9fHjqwX/5SEjAAQOLSclEFhpYvx8tiXVqZcltVnp2cOszsBCzgJadtRI3pgvZJG3SJ21LfHl6z+1fsMqX8cPxVXeep2gpsIAy/6Hpix6qpCw34UYJQpTAunv6GYcaNLBunX/Fq6UjAlQATFk3v/75t3XJEYccW1Fmhu/XVm64e+NnQehShF6NthsXK9VByejHhSafmGVP/qA6j1UhaYWzjSTIOkZOBYP/dS6GSxUkOX6+ffVTMWnTgSpTFFehOItROGTfrxAIm0k89uifWKiRamVX/5ch1PF5bP6Bu9nBYVC350odTmkg4DJr23+jDZ+KYVVV0x4MUmcBAOIPfAXb0pRLAAAAAElFTkSuQmCC" alt="5ch1PF5bP6Bu9nBYVC350odTmkg4DJr23+jDZ+KY" />

5

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACwAAAASCAIAAACvlquLAAAD5UlEQVR4nGP5//8/w0ADloF2AAgMM0f8vNYXHDzpJrukJM/v169ZjNN7J+ZbCzMzMPz7eHpqbv7Mq2zSQn9fPvurnzlpUpYJPxM1HfH/94+/LBwsjAx/3t7+FbHxcr0+B8P/T0eLdW08UpXvr/UX+X6q2j/vQMSJ633m3P8/HyvQsvYpN7o7w4qbKo74++78yp6WGTcd5yzPUWNjYJX1zYxQ5wDJMPIZBDgI9u/aeee7v/DnO+eeM8gaK3KBJHg1bJUYJp2/+emfFTciLFAc8e/NvoaoiOY9GosvVt2uzOvfepvFtm3/zkp9TlTrf78+vay7bfZpXq+C1q0tGrxg49gUvAIR4fPn518GHjFeZgZGIcsoW56WHSdfR/iK/X9+YO11LqsqG2Hk2EB1BJOIY06Cetvep/Mb96d2nnpc26RrMXPZzUJ9Aw6oil8vjy/ubF94RTyguHdXpxIXI9Yw+vVw87R9zG6t8WrsQJ5yxvI5hwz95JT0VH5fvfo3dOW5HFU2FPVo0fHj0an7f4Wdi2e0e4kw/TjPwsTMK8bDDPX/vbkRzrUfkhYt3N0rw47V+n+vN6d4l+27fe+LRubsJTEKrAygBNsfkn45/sCzDnuh/y+25ViEB/XrHirVZMfliP9f7px/yW0bYysCDK7/X++fe86ppivOCpFkVYyeMPdbW09LduX9stJ4a0lU74CDUtR33ilfhv/f767OdtIxPr77eLfhpe6OE7JVi62EQH6RcC1Ml9Ho6jmdNdcGkTJRHfHz0en7/+S95cGh//PJ6bt/ZTMUYFHBwMgh65Q73THt6aG57clOzXJhpZWpTvKcmGHCyKkcWJndqFbXcaR67rsb7xgEZASgFrEIKwozvLl2/8t/G264RhRH/P9y9+xzTnUDCbDfv909/YxdTV+CFc0Gdmn7rCn2Kc+PzG/PdGwWj2jtyQWWB78f79r2xcZfkwuujpHh768/jBzCIuwMzz58/8fAAAqKv1/efGXgkBXhQHY6iiN+PgYGhJyHPCeEc+beH7kURECgAjZJm/RJ2xJfnt5z+xeo9vnzcu+UpTwu/eD8///zhSULr/N515vz8jIluPPFrtz9NDlJjoXh1/1NS67xe9aZ8CKbheyI/1+BAcGhZiAJ9vvXe6cf/3t7YvmWB9VBCqDo/3GhySdm2ZM/qI5hVUha4WwjycIqpitxKN7EVEpGkPXXh1efhZzmHm4NkWBmZAiYt6Uxp8zffqW0wN/XT76pdmyf5C+KM4syCofs+xUC4wkF7v6NUsFyGNTtuVKHPVyABsnFLD4bg02GWdi2dPnxUlwaGYZdBUYBGBSOAADz13/Aw5V9FQAAAABJRU5ErkJggg==" alt="Aw5V9FQAAAABJRU5ErkJggg==" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADkAAAASCAIAAABuEeEnAAADwklEQVR4nGP5//8/wxABLAPtABLACHHr71dHphfnTOeYfGa2LTcV9P7/cnlOQe7cO2zcP1//0s6ZMTFJm5uRcrf+e39yZl339vuPDlx8FUSUjv+/f/xl4WBhxKn3/8cDRV5Vb/su7w2V+P9wjpueZ7HKlen2fEiuJTNcOZTDe1anPOk32tpKSOnfd+dX9rTMuOk4Z3mOGhsuvf/f7Gpf/NFug7sEM5AnF1xgmx/etqvFLkQE4VgUt/57e6AxMrxpj8r806XXSnImHPzl0Hdgte+l6pj8GWfYg+cdWRorB9bAxCkiBIxIAq78/fr0su622ad5vQpat7Zo8DIx4Nb77eb2cz+kCuU4wDxGbmVT6R9Ttt/4FmKDSF4obmUSts9N1Wrb+2jZhOuliy/4tunZtWSnXvXL23DRJU0leNrBidGxEkyEAhIIfr08vrizfeEV8YDi3l2dSlyMBHX8fHH3LQOPKC8zhMvMJ8HL8ObOi58MDDjcCtTy6NS9P/yWOX3lrqI/jv/7x8CsmNJVYCP4eQfDf1Z+fg4iHPr73twI59oPSYsW7u6VYSfsSjD49+sr0FnMbMxQ9YwsbECX/fz66x8wBLG79f+Xu2ee8zglO4oyMfz7dPvSG0H3eGtBRobfzy/c/ikVqMBJhLWsitET5n5r62nJrrxfVhpvLclGhCYmNm52BoavP/9AK6b/v3/+YWDg4WZDDhxUt/58fPreP3kvBVCq+fHw5H0GhRgw+/uDk4+YlYxl2ImwloGRQ9Ypd7pj2tNDc9uTnZrlwkorU53kOfGHMIekmijDwZef/wJDF8j98+nZRwYRAwkUC1Hc+v/rnTPPOdT1JViBsfLp5vnXvFpawkCtv19cuPlD0leJixinwlzMLm2fNcU+5fmR+e2Zjs3iEa09udbCzLiUc6p7GHGuOPfwO4MWGyh+b596ym7gro5iI4pbfz46c++vXCY4KH8+PPXgv3wkJIiBwcqkZCJLVLCiAjZJm/RJ2xJfnt5z+xe+hgejsGtlnGDw9B3P3cIl/z1YM+GoUOxGdxGcdcH/r3dPP+NQgwbrrfOveLV0RIAKgKn15tc//7YuOeKQYysKCprfjzdPmLLz2vUDtxjevatPyzRQs0wuidMGZ9kfF5p8YpY9+YPqFlaFpBXONpIsuPXy2fVsacvN8XdZIPj75Tf1/p39jvyo6QbZrYzCIft+hUDYTOKxR//EQu1RK7v6vwzFZlnf0k5fIGM+ZghxGNTtuVKHOwRx6mXk0UubfygNt84R0nahOxhKbgUAaaOTR5uis6kAAAAASUVORK5CYII=" alt="EQu1RK7v6vwzFZlnf0k5fIGM+ZghxGNTtuVKHOwR" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADkAAAASCAIAAABuEeEnAAAEgklEQVR4nGP5//8/wxABLAPtABLAsHfrj0sdwVGz77FJiHL9ePOexyZ/Qk+KIR8TaYb8fnVkenHOdI7JZ2bbckPF/n+5PKcgd+4dNu6fr39p58yYmKTNzUiZW3+/vvEncdvFYnU2hn/v92VpO7t8lbuzxEOQEbeW/79//GXhYIGo+Pf+5My67u33Hx24+CoISc3HA0VeVW/7Lu8Nlfj/cI6bnmexypXp9nwwY8lyK4daXJmqIhuIySRoFu7AN3PP+hvfPSy5sCn+++78yp6WGTcd5yzPUWODGqAc3rM65Um/0dZWJKe+2dW++KPdBncJZiBPLrjANj+8bVeLXYgIIxa3/nt7oDEyvGmPyvzTpddKciYc/OXQd2C176XqmPwZZ9iD5x1ZGisH0sAq6+SMpOvvfwY2LlbMQP39+vSy7rbZp3m9Clq3tmjwwhMJE6eIEFAaTfm3m9vP/ZAqlOMA8xi5lU2lf0zZfuNbiA03FrcyCdvnpmq17X20bML10sUXfNv07FqyU6/65W246JKmEjzt4MToWAm0ZPn7xfmrn0Vc/dU5kQR/vTy+uLN94RXxgOLeXZ1KXHgSBwL8fHH3LQOPKC8zhMvMJ8HL8ObOi58MDNjcClT/6NS9P/yWOX3lrqI/jv/7x8CsmNJVYCP4eQfDf1Z+fg6M/PPl7NRpz90662144Y6/NzfCufZD0qKFu3tl2IlyJRj8+/UV6CxmNmaoFkYWNqDjfn799Q8YiFjc+v/L3TPPeZySHUWZGP59un3pjaB7vDUwy/x+fuH2T6lABU5U4/++2laadjhg5Y4EeYQ5rIrRE+Z+a+tpya68X1Yaby3JRpxbmdi42RkYvv78A62b/v/++YeBgYebDR4+qG79+fj0vX/yXgqgJPPj4cn7DAoxYPb3BycfMSsZy7CjOHRneWivQN+OFhcRlOBm5JB1yp3umPb00Nz2ZKdmubDSylQneU6CIcwhqSbKcPDl57/A0AVy/3x69pFBxEACYSeKW/9/vXPmOYe6vgQrMEo+3Tz/mldLS5gZlCYv3Pwh6auEyOe/H6/NT1ih3r8hz4gXuyMY2aXts6bYpzw/Mr8907FZPKK1J9damBmPWznVPYw4V5x7+J1Biw0UxbdPPWU3cFdHWIri1p+Pztz7K5cJDsqfD089+C8fCQliYLAyKZnIQr34+9GSWKdWltxmpWcHtz4DCzELaNlZK3FjOptN0iZ90rbEl6f33P5FoOHBKOxaGScYPH3Hc7dwyX8P1kw4KhS70V0Ee13w/+vd08841KDBeuv8K14tHRGgAmBqvfn1z7+tS4445NiKMjN8v7Zyw90bPwtClyL0arTduFipDkqaPy40+cQse/IH1SGsCkkrnG0kIdb9frx5wpSd164fuMXw7l19WqaBmmVySZw2N59dz5a23Bx/lwWCv19+U+/f2e/Ij+R9ZLcyCofs+xUCYTOJxx79Ewu1R63s6v8yhDo+j80/cIcRh0Hdnit1eEOQVda3tNMXyJiPJsHIo5c2/1AaDm3Dvu0yQGAouRUAi3vCIaA21BYAAAAASUVORK5CYII=" alt="1AaDm3Dvu0yQGAouRUAi3vCIaA21BYAAAAASUVOR" />

6

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACwAAAASCAIAAACvlquLAAAD5UlEQVR4nGP5//8/w0ADloF2AAgMM0f8vNYXHDzpJrukJM/v169ZjNN7J+ZbCzMzMPz7eHpqbv7Mq2zSQn9fPvurnzlpUpYJPxM1HfH/94+/LBwsjAx/3t7+FbHxcr0+B8P/T0eLdW08UpXvr/UX+X6q2j/vQMSJ633m3P8/HyvQsvYpN7o7w4qbKo74++78yp6WGTcd5yzPUWNjYJX1zYxQ5wDJMPIZBDgI9u/aeee7v/DnO+eeM8gaK3KBJHg1bJUYJp2/+emfFTciLFAc8e/NvoaoiOY9GosvVt2uzOvfepvFtm3/zkp9TlTrf78+vay7bfZpXq+C1q0tGrxg49gUvAIR4fPn518GHjFeZgZGIcsoW56WHSdfR/iK/X9+YO11LqsqG2Hk2EB1BJOIY06Cetvep/Mb96d2nnpc26RrMXPZzUJ9Aw6oil8vjy/ubF94RTyguHdXpxIXI9Yw+vVw87R9zG6t8WrsQJ5yxvI5hwz95JT0VH5fvfo3dOW5HFU2FPVo0fHj0an7f4Wdi2e0e4kw/TjPwsTMK8bDDPX/vbkRzrUfkhYt3N0rw47V+n+vN6d4l+27fe+LRubsJTEKrAygBNsfkn45/sCzDnuh/y+25ViEB/XrHirVZMfliP9f7px/yW0bYysCDK7/X++fe86ppivOCpFkVYyeMPdbW09LduX9stJ4a0lU74CDUtR33ilfhv/f767OdtIxPr77eLfhpe6OE7JVi62EQH6RcC1Ml9Ho6jmdNdcGkTJRHfHz0en7/+S95cGh//PJ6bt/ZTMUYFHBwMgh65Q73THt6aG57clOzXJhpZWpTvKcmGHCyKkcWJndqFbXcaR67rsb7xgEZASgFrEIKwozvLl2/8t/G264RhRH/P9y9+xzTnUDCbDfv909/YxdTV+CFc0Gdmn7rCn2Kc+PzG/PdGwWj2jtyQWWB78f79r2xcZfkwuujpHh768/jBzCIuwMzz58/8fAAAqKv1/efGXgkBXhQHY6iiN+PgYGhJyHPCeEc+beH7kURECgAjZJm/RJ2xJfnt5z+xeo9vnzcu+UpTwu/eD8///zhSULr/N515vz8jIluPPFrtz9NDlJjoXh1/1NS67xe9aZ8CKbheyI/1+BAcGhZiAJ9vvXe6cf/3t7YvmWB9VBCqDo/3GhySdm2ZM/qI5hVUha4WwjycIqpitxKN7EVEpGkPXXh1efhZzmHm4NkWBmZAiYt6Uxp8zffqW0wN/XT76pdmyf5C+KM4syCofs+xUC4wkF7v6NUsFyGNTtuVKHPVyABsnFLD4bg02GWdi2dPnxUlwaGYZdBUYBGBSOAADz13/Aw5V9FQAAAABJRU5ErkJggg==" alt="Aw5V9FQAAAABJRU5ErkJggg==" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADkAAAASCAIAAABuEeEnAAADwklEQVR4nGP5//8/wxABLAPtABLACHHr71dHphfnTOeYfGa2LTcV9P7/cnlOQe7cO2zcP1//0s6ZMTFJm5uRcrf+e39yZl339vuPDlx8FUSUjv+/f/xl4WBhxKn3/8cDRV5Vb/su7w2V+P9wjpueZ7HKlen2fEiuJTNcOZTDe1anPOk32tpKSOnfd+dX9rTMuOk4Z3mOGhsuvf/f7Gpf/NFug7sEM5AnF1xgmx/etqvFLkQE4VgUt/57e6AxMrxpj8r806XXSnImHPzl0Hdgte+l6pj8GWfYg+cdWRorB9bAxCkiBIxIAq78/fr0su622ad5vQpat7Zo8DIx4Nb77eb2cz+kCuU4wDxGbmVT6R9Ttt/4FmKDSF4obmUSts9N1Wrb+2jZhOuliy/4tunZtWSnXvXL23DRJU0leNrBidGxEkyEAhIIfr08vrizfeEV8YDi3l2dSlyMBHX8fHH3LQOPKC8zhMvMJ8HL8ObOi58MDDjcCtTy6NS9P/yWOX3lrqI/jv/7x8CsmNJVYCP4eQfDf1Z+fg4iHPr73twI59oPSYsW7u6VYSfsSjD49+sr0FnMbMxQ9YwsbECX/fz66x8wBLG79f+Xu2ee8zglO4oyMfz7dPvSG0H3eGtBRobfzy/c/ikVqMBJhLWsitET5n5r62nJrrxfVhpvLclGhCYmNm52BoavP/9AK6b/v3/+YWDg4WZDDhxUt/58fPreP3kvBVCq+fHw5H0GhRgw+/uDk4+YlYxl2ImwloGRQ9Ypd7pj2tNDc9uTnZrlwkorU53kOfGHMIekmijDwZef/wJDF8j98+nZRwYRAwkUC1Hc+v/rnTPPOdT1JViBsfLp5vnXvFpawkCtv19cuPlD0leJixinwlzMLm2fNcU+5fmR+e2Zjs3iEa09udbCzLiUc6p7GHGuOPfwO4MWGyh+b596ym7gro5iI4pbfz46c++vXCY4KH8+PPXgv3wkJIiBwcqkZCJLVLCiAjZJm/RJ2xJfnt5z+xe+hgejsGtlnGDw9B3P3cIl/z1YM+GoUOxGdxGcdcH/r3dPP+NQgwbrrfOveLV0RIAKgKn15tc//7YuOeKQYysKCprfjzdPmLLz2vUDtxjevatPyzRQs0wuidMGZ9kfF5p8YpY9+YPqFlaFpBXONpIsuPXy2fVsacvN8XdZIPj75Tf1/p39jvyo6QbZrYzCIft+hUDYTOKxR//EQu1RK7v6vwzFZlnf0k5fIGM+ZghxGNTtuVKHOwRx6mXk0UubfygNt84R0nahOxhKbgUAaaOTR5uis6kAAAAASUVORK5CYII=" alt="EQu1RK7v6vwzFZlnf0k5fIGM+ZghxGNTtuVKHOwR" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADkAAAASCAIAAABuEeEnAAAEgklEQVR4nGP5//8/wxABLAPtABLAsHfrj0sdwVGz77FJiHL9ePOexyZ/Qk+KIR8TaYb8fnVkenHOdI7JZ2bbckPF/n+5PKcgd+4dNu6fr39p58yYmKTNzUiZW3+/vvEncdvFYnU2hn/v92VpO7t8lbuzxEOQEbeW/79//GXhYIGo+Pf+5My67u33Hx24+CoISc3HA0VeVW/7Lu8Nlfj/cI6bnmexypXp9nwwY8lyK4daXJmqIhuIySRoFu7AN3PP+hvfPSy5sCn+++78yp6WGTcd5yzPUWODGqAc3rM65Um/0dZWJKe+2dW++KPdBncJZiBPLrjANj+8bVeLXYgIIxa3/nt7oDEyvGmPyvzTpddKciYc/OXQd2C176XqmPwZZ9iD5x1ZGisH0sAq6+SMpOvvfwY2LlbMQP39+vSy7rbZp3m9Clq3tmjwwhMJE6eIEFAaTfm3m9vP/ZAqlOMA8xi5lU2lf0zZfuNbiA03FrcyCdvnpmq17X20bML10sUXfNv07FqyU6/65W246JKmEjzt4MToWAm0ZPn7xfmrn0Vc/dU5kQR/vTy+uLN94RXxgOLeXZ1KXHgSBwL8fHH3LQOPKC8zhMvMJ8HL8ObOi58MDNjcClT/6NS9P/yWOX3lrqI/jv/7x8CsmNJVYCP4eQfDf1Z+fg6M/PPl7NRpz90662144Y6/NzfCufZD0qKFu3tl2IlyJRj8+/UV6CxmNmaoFkYWNqDjfn799Q8YiFjc+v/L3TPPeZySHUWZGP59un3pjaB7vDUwy/x+fuH2T6lABU5U4/++2laadjhg5Y4EeYQ5rIrRE+Z+a+tpya68X1Yaby3JRpxbmdi42RkYvv78A62b/v/++YeBgYebDR4+qG79+fj0vX/yXgqgJPPj4cn7DAoxYPb3BycfMSsZy7CjOHRneWivQN+OFhcRlOBm5JB1yp3umPb00Nz2ZKdmubDSylQneU6CIcwhqSbKcPDl57/A0AVy/3x69pFBxEACYSeKW/9/vXPmOYe6vgQrMEo+3Tz/mldLS5gZlCYv3Pwh6auEyOe/H6/NT1ih3r8hz4gXuyMY2aXts6bYpzw/Mr8907FZPKK1J9damBmPWznVPYw4V5x7+J1Biw0UxbdPPWU3cFdHWIri1p+Pztz7K5cJDsqfD089+C8fCQliYLAyKZnIQr34+9GSWKdWltxmpWcHtz4DCzELaNlZK3FjOptN0iZ90rbEl6f33P5FoOHBKOxaGScYPH3Hc7dwyX8P1kw4KhS70V0Ee13w/+vd08841KDBeuv8K14tHRGgAmBqvfn1z7+tS4445NiKMjN8v7Zyw90bPwtClyL0arTduFipDkqaPy40+cQse/IH1SGsCkkrnG0kIdb9frx5wpSd164fuMXw7l19WqaBmmVySZw2N59dz5a23Bx/lwWCv19+U+/f2e/Ij+R9ZLcyCofs+xUCYTOJxx79Ewu1R63s6v8yhDo+j80/cIcRh0Hdnit1eEOQVda3tNMXyJiPJsHIo5c2/1AaDm3Dvu0yQGAouRUAi3vCIaA21BYAAAAASUVORK5CYII=" alt="1AaDm3Dvu0yQGAouRUAi3vCIaA21BYAAAAASUVOR" />

7

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACwAAAASCAIAAACvlquLAAAD5UlEQVR4nGP5//8/w0ADloF2AAgMM0f8vNYXHDzpJrukJM/v169ZjNN7J+ZbCzMzMPz7eHpqbv7Mq2zSQn9fPvurnzlpUpYJPxM1HfH/94+/LBwsjAx/3t7+FbHxcr0+B8P/T0eLdW08UpXvr/UX+X6q2j/vQMSJ633m3P8/HyvQsvYpN7o7w4qbKo74++78yp6WGTcd5yzPUWNjYJX1zYxQ5wDJMPIZBDgI9u/aeee7v/DnO+eeM8gaK3KBJHg1bJUYJp2/+emfFTciLFAc8e/NvoaoiOY9GosvVt2uzOvfepvFtm3/zkp9TlTrf78+vay7bfZpXq+C1q0tGrxg49gUvAIR4fPn518GHjFeZgZGIcsoW56WHSdfR/iK/X9+YO11LqsqG2Hk2EB1BJOIY06Cetvep/Mb96d2nnpc26RrMXPZzUJ9Aw6oil8vjy/ubF94RTyguHdXpxIXI9Yw+vVw87R9zG6t8WrsQJ5yxvI5hwz95JT0VH5fvfo3dOW5HFU2FPVo0fHj0an7f4Wdi2e0e4kw/TjPwsTMK8bDDPX/vbkRzrUfkhYt3N0rw47V+n+vN6d4l+27fe+LRubsJTEKrAygBNsfkn45/sCzDnuh/y+25ViEB/XrHirVZMfliP9f7px/yW0bYysCDK7/X++fe86ppivOCpFkVYyeMPdbW09LduX9stJ4a0lU74CDUtR33ilfhv/f767OdtIxPr77eLfhpe6OE7JVi62EQH6RcC1Ml9Ho6jmdNdcGkTJRHfHz0en7/+S95cGh//PJ6bt/ZTMUYFHBwMgh65Q73THt6aG57clOzXJhpZWpTvKcmGHCyKkcWJndqFbXcaR67rsb7xgEZASgFrEIKwozvLl2/8t/G264RhRH/P9y9+xzTnUDCbDfv909/YxdTV+CFc0Gdmn7rCn2Kc+PzG/PdGwWj2jtyQWWB78f79r2xcZfkwuujpHh768/jBzCIuwMzz58/8fAAAqKv1/efGXgkBXhQHY6iiN+PgYGhJyHPCeEc+beH7kURECgAjZJm/RJ2xJfnt5z+xeo9vnzcu+UpTwu/eD8///zhSULr/N515vz8jIluPPFrtz9NDlJjoXh1/1NS67xe9aZ8CKbheyI/1+BAcGhZiAJ9vvXe6cf/3t7YvmWB9VBCqDo/3GhySdm2ZM/qI5hVUha4WwjycIqpitxKN7EVEpGkPXXh1efhZzmHm4NkWBmZAiYt6Uxp8zffqW0wN/XT76pdmyf5C+KM4syCofs+xUC4wkF7v6NUsFyGNTtuVKHPVyABsnFLD4bg02GWdi2dPnxUlwaGYZdBUYBGBSOAADz13/Aw5V9FQAAAABJRU5ErkJggg==" alt="Aw5V9FQAAAABJRU5ErkJggg==" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADMAAAASCAIAAAB5M3HuAAADKUlEQVR4nGP5//8/w6AELAPtAJxgWLrs96sj04tzpnNMPjPblptk3f+/XJ5TkDv3Dhv3z9e/tHNmTEzS5mak3GX/3p+cWde9/f6jAxdfBZFjwP+PB4q8qt72Xd4bKvH/4Rw3Pc9ilSvT7fmQ3EZmmHEoh/esTnnSb7S1lSyHvdnVvvij3QZ3CWYgTy64wDY/vG1Xi12ICMJpKC779/ZAY2R40x6V+adLr5XkTDj4y6HvwGrfS9Ux+TPOsAfPO7I0Vg6sgYlTRAgYneT5Cgi+3dx+7odUoRwHmMfIrWwq/WPK9hvfQmwQyQLFZUzC9rmpWm17Hy2bcL108QXfNj27luzUq355Gy66pKkETzs4MTpWgomArV/2RUg5r/yMVY7ZdfPbXT78DD9f3H3LwCPKywwV5pPgZXhz58VPBgYcLmNg+Pno1L0//JY5feWuoj+O//vHwKyY0lVgI/h5B8N/Vn5+DkLOAgIepxWf/q/Aq+Tfr69ARzCzMUPjjpGFDeiOn19//QOGDnaX/f9y98xzHqdkR1Emhn+fbl96I+geby3IyPD7+YXbP6UCFTgJO4wYwMTGzc7A8PXnH2gh///3zz9AL3GzIXsc1WU/H5++90/eSwEU/z8enrzPoBADZn9/cPIRs5KxDDt1XMbAIakmynDw5ee/wJADcv98evaRQcRAAsV4FJf9/3rnzHMOdX0JVmCIf7p5/jWvlpYwUOvvFxdu/pD0VeIixtYv+6NknZZ/wCrH5rHl1XZvfgZOdQ8jzhXnHn5n0GIDxdTtU0/ZDdzVUcxHcdnPR2fu/ZXLBAfTz4enHvyXj4QEHzDImJRMZIkKMh7HZe//L8OvhlHYtTJOMHj6judu4ZL/HqyZcFQodqO7CM6S9v/Xu6efcahBg+zW+Ve8WjoiQAXAVHbz659/W5ccccixFQUF/+/HmydM2Xnt+oFbDO/e1adlGqhZJpfEaRNfEzDy2fVsacvN8XdZIPj75Tf1/p39jvwoDkNxGaNwyL5fIRA2k3js0T+xEDarWtnV/2XIulhlfUs7fYGM+US7BcNtPHpp8w+l4VYwLGt0GoPB6zIAZ9cz1wW/EbgAAAAASUVORK5CYII=" alt="EbgAAAAASUVORK5CYII=" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAASCAIAAACFJlokAAAExklEQVR4nGP5//8/w9ABLAPtANLASHDuj0sdwVGz77FJiHL9ePOexyZ/Qk+KIR8TGSb9e7MtWTf40cwXe/34gdz/Xy7PKcide4eN++frX9o5MyYmaXMzUuzc369v/EncdrFYnY3h3/t9WdrOLl/l7izxEGTEreX/7x9/WThYUFX8fbo6K3HBi59OUDUfDxR5Vb3tu7w3VOL/wzluep7FKlem2/MhaSLLuRxqcWWqimwgJpOgWbgD38w9629897Dkwqb477vzK3taZtx0nLM8R40N2dP35uUvkEs1ZmiDuvbNrvbFH+02uEswA3lywQW2+eFtu1rsQkQQ7kVx7r+3Bxojw5v2qMw/XXqtJGfCwV8OfQdW+16qjsmfcYY9eN6RpbFyIA2ssk7OSLr+/mdg42LFDNrfr08v626bfZrXq6B1a4sGL0pq+XFtcv42x4nTxFJ6oSLfbm4/90OqUI4DzGPkVjaV/jFl+41vITbc2J3LJGyfm6rVtvfRsgnXSxdf8G3Ts2vJTr3ql7fhokuaSvC0gxOjYyXQkujvF+evfhZx9VfnRBL89fL44s72hVfEA4p7d3UqcaF75f/XMx2Fp0NnL1Zj3wAX/Pni7lsGHlFeZgiXmU+Cl+HNnRc/GRhwOBeo5dGpe3/4LXP6yl1Ffxz/94+BWTGlq8BG8PMOhv+s/PwcGNnpy9mp0567ddbb8MLdf29uhHPth6RFC3f3yrBjS87/PxysK3+cuawWGFXv4KL/fn0FuoyZjRmqhZGFDei4n19//QOGI3bn/v9y98xzHqdkR1Emhn+fbl96I+gebw3MQb+fX7j9UypQgRNFNcPfV9tK0w4HrNyRII8wh1UxesLcb209LdmV98tK460l2VA1/Xu9tbz5T+VqP3FmFHEmNm52BoavP/9Aq63/v3/+YWDg4WZDDiJU5/58fPreP3kvBVDy+fHw5H0GhRgw+/uDk4+YlYxl2FHcurM8tFegb0eLiwhKoDNyyDrlTndMe3pobnuyU7NcWGllqpM8Jyyc3x/omrXv8CzhSUha/AUYDaZcn6gmynDw5ee/wDAGiv359Owjg4iBBLKdqM79//XOmecc6voSrMBA+HTz/GteLS1hZlD6vHDzh6SvEiLn/368Nj9hhXr/hjwjXuzFFyO7tH3WFPuU50fmt2c6NotHtPbkWoMME3Cdd/7Mx79QZR/3JDtXsPQemOOtrSgsYcS54tzD7wxabKCIvn3qKbuBuzpKcYPi3J+Pztz7K5cJDtCfD089+C8fCQloYOAyKZnIQj36+9GSWKdWltxmpWcHtz4DCzELaNlZK3FjupxN0iZ90rbEl6f33P71H6pUxcAYLv/uPh8DI6uKgYE6P8N/18o4weDpO567hUv+e7BmwlGh2I3uIjirif9f755+xqEGDdxb51/xaumIABUAU+7Nr3/+bV1yxCHHVpSZ4fu1lRvu3vhZELoUoVej7cbFSnVQMv1xocknZtmTP6jOZlVIWuFsI4m3mGfks+vZ0pab4++yQPD3y2/q/Tv7HflRQwBZP6NwyL5fIRA2k3js0T+xUKvUyq7+L0Oo4/PY/AN3M47DoG7PlTp8zkIGQiGH/v9DuIBHL23+oTTcykdCE2fgwBBzLgDpYeD2cQM8SQAAAABJRU5ErkJggg==" alt="v9DuIBHL23+oTTcykdCE2fgwBBzLgDpYeD2cQM8S" />

8

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACwAAAASCAIAAACvlquLAAAD5UlEQVR4nGP5//8/w0ADloF2AAgMM0f8vNYXHDzpJrukJM/v169ZjNN7J+ZbCzMzMPz7eHpqbv7Mq2zSQn9fPvurnzlpUpYJPxM1HfH/94+/LBwsjAx/3t7+FbHxcr0+B8P/T0eLdW08UpXvr/UX+X6q2j/vQMSJ633m3P8/HyvQsvYpN7o7w4qbKo74++78yp6WGTcd5yzPUWNjYJX1zYxQ5wDJMPIZBDgI9u/aeee7v/DnO+eeM8gaK3KBJHg1bJUYJp2/+emfFTciLFAc8e/NvoaoiOY9GosvVt2uzOvfepvFtm3/zkp9TlTrf78+vay7bfZpXq+C1q0tGrxg49gUvAIR4fPn518GHjFeZgZGIcsoW56WHSdfR/iK/X9+YO11LqsqG2Hk2EB1BJOIY06Cetvep/Mb96d2nnpc26RrMXPZzUJ9Aw6oil8vjy/ubF94RTyguHdXpxIXI9Yw+vVw87R9zG6t8WrsQJ5yxvI5hwz95JT0VH5fvfo3dOW5HFU2FPVo0fHj0an7f4Wdi2e0e4kw/TjPwsTMK8bDDPX/vbkRzrUfkhYt3N0rw47V+n+vN6d4l+27fe+LRubsJTEKrAygBNsfkn45/sCzDnuh/y+25ViEB/XrHirVZMfliP9f7px/yW0bYysCDK7/X++fe86ppivOCpFkVYyeMPdbW09LduX9stJ4a0lU74CDUtR33ilfhv/f767OdtIxPr77eLfhpe6OE7JVi62EQH6RcC1Ml9Ho6jmdNdcGkTJRHfHz0en7/+S95cGh//PJ6bt/ZTMUYFHBwMgh65Q73THt6aG57clOzXJhpZWpTvKcmGHCyKkcWJndqFbXcaR67rsb7xgEZASgFrEIKwozvLl2/8t/G264RhRH/P9y9+xzTnUDCbDfv909/YxdTV+CFc0Gdmn7rCn2Kc+PzG/PdGwWj2jtyQWWB78f79r2xcZfkwuujpHh768/jBzCIuwMzz58/8fAAAqKv1/efGXgkBXhQHY6iiN+PgYGhJyHPCeEc+beH7kURECgAjZJm/RJ2xJfnt5z+xeo9vnzcu+UpTwu/eD8///zhSULr/N515vz8jIluPPFrtz9NDlJjoXh1/1NS67xe9aZ8CKbheyI/1+BAcGhZiAJ9vvXe6cf/3t7YvmWB9VBCqDo/3GhySdm2ZM/qI5hVUha4WwjycIqpitxKN7EVEpGkPXXh1efhZzmHm4NkWBmZAiYt6Uxp8zffqW0wN/XT76pdmyf5C+KM4syCofs+xUC4wkF7v6NUsFyGNTtuVKHPVyABsnFLD4bg02GWdi2dPnxUlwaGYZdBUYBGBSOAADz13/Aw5V9FQAAAABJRU5ErkJggg==" alt="Aw5V9FQAAAABJRU5ErkJggg==" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAASCAIAAACFJlokAAAEWElEQVR4nGP5//8/w9ABLAPtANLAyHHu71dHphfnTOeYfGa2LTeZZvx7sy1ZN/jRzBd7/fiB3P9fLs8pyJ17h4375+tf2jkzJiZpczNS7tx/70/OrOvefv/RgYuvgojS8f/3j78sHCwodjP8fbo6K3HBi59OUDUfDxR5Vb3tu7w3VOL/wzluep7FKlem2/MhaSIzdDmUw3tWpzzpN9raSkjp33fnV/a0zLjpOGd5jhobksTve/PyF8ilGjO0QV37Zlf74o92G9wlmIE8ueAC2/zwtl0tdiEiCPeiOPff2wONkeFNe1Tmny69VpIz4eAvh74Dq30vVcfkzzjDHjzvyNJYObAGJk4RIaB9BBz6+/XpZd1ts0/zehW0bm3R4GVClvxxbXL+NseJ08RSeqEi325uP/dDqlCOA8xj5FY2lf4xZfuNbyE2iKSG4lwmYfvcVK22vY+WTbheuviCb5ueXUt26lW/vA0XXdJUgqcdnBgdK4FiKQ7w6+XxxZ3tC6+IBxT37upU4mJEk///9UxH4enQ2YvV2DfABX++uPuWgUeUlxnCZeaT4GV4c+fFTwYGHM4Fanl06t4ffsucvnJX0R/H//1jYFZM6SqwEfy8g+E/Kz8/BxFu/X1vboRz7YekRQt398qwozsU7NgPB+vKH2cuqwVG1Tu46L9fX4EuY2ZjhmphZGEDOu7n11//gOGI3bn/v9w985zHKdlRlInh36fbl94IusdbCzIy/H5+4fZPqUAFTsKuZWBVjJ4w91tbT0t25f2y0nhrSTZU+X+vt5Y3/6lc7SfOjCLOxMbNzsDw9ecfaLX1//fPPwwMPNxsyEGE6tyfj0/f+yfvpQBKPj8enrzPoBADZn9/cPIRs5KxDDsRzmVg5JB1yp3umPb00Nz2ZKdmubDSylQneU5YOL8/0DVr3+FZwpOQtPgLMBpMuT5RTZTh4MvPf4FhDBT78+nZRwYRAwkUO1Gc+//rnTPPOdT1JViBgfDp5vnXvFpawkCtv19cuPlD0leJixjXwhzNLm2fNcU+5fmR+e2Zjs3iEa09udYgwwRc550/8/EvVNnHPcnOFSy9B+Z4aysKSxhxrjj38DuDFhsoom+fespu4K6OYimKc38+OnPvr1wmOEB/Pjz14L98JCSggYHLpGQiS1TgogI2SZv0SdsSX57ec/sXJJaZBVQMjOHy7+7zMTCyqhgYqPMz/HetjBMMnr7juVu45L8HayYcFYrd6C6Cs5r4//Xu6WccatDAvXX+Fa+WjghQATDl3vz659/WJUcccmxFQRH1+/HmCVN2Xrt+4BbDu3f1aZkGapbJJXHa4Bz840KTT8yyJ39Qnc2qkLTC2UYSbzHPyGfXs6UtN8ffZYHg75ff1Pt39jvyo+ZVZP2MwiH7foVA2EzisUf/xEKtUiu7+r8MxXJZ39JOXyBjPqalHAZ1e67U4XMWMhAKOfT/H8IFPHpp8w+l4VY+cpo4AwGGmHMB0Q6yHI2JMuEAAAAASUVORK5CYII=" alt="H8IFPHpp8w+l4VY+cpo4AwGGmHMB0Q6yHI2JMuEA" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAASCAIAAACFJlokAAAExklEQVR4nGP5//8/w9ABLAPtANLASHDuj0sdwVGz77FJiHL9ePOexyZ/Qk+KIR8TGSb9e7MtWTf40cwXe/34gdz/Xy7PKcide4eN++frX9o5MyYmaXMzUuzc369v/EncdrFYnY3h3/t9WdrOLl/l7izxEGTEreX/7x9/WThYUFX8fbo6K3HBi59OUDUfDxR5Vb3tu7w3VOL/wzluep7FKlem2/MhaSLLuRxqcWWqimwgJpOgWbgD38w9629897Dkwqb477vzK3taZtx0nLM8R40N2dP35uUvkEs1ZmiDuvbNrvbFH+02uEswA3lywQW2+eFtu1rsQkQQ7kVx7r+3Bxojw5v2qMw/XXqtJGfCwV8OfQdW+16qjsmfcYY9eN6RpbFyIA2ssk7OSLr+/mdg42LFDNrfr08v626bfZrXq6B1a4sGL0pq+XFtcv42x4nTxFJ6oSLfbm4/90OqUI4DzGPkVjaV/jFl+41vITbc2J3LJGyfm6rVtvfRsgnXSxdf8G3Ts2vJTr3ql7fhokuaSvC0gxOjYyXQkujvF+evfhZx9VfnRBL89fL44s72hVfEA4p7d3UqcaF75f/XMx2Fp0NnL1Zj3wAX/Pni7lsGHlFeZgiXmU+Cl+HNnRc/GRhwOBeo5dGpe3/4LXP6yl1Ffxz/94+BWTGlq8BG8PMOhv+s/PwcGNnpy9mp0567ddbb8MLdf29uhHPth6RFC3f3yrBjS87/PxysK3+cuawWGFXv4KL/fn0FuoyZjRmqhZGFDei4n19//QOGI3bn/v9y98xzHqdkR1Emhn+fbl96I+gebw3MQb+fX7j9UypQgRNFNcPfV9tK0w4HrNyRII8wh1UxesLcb209LdmV98tK460l2VA1/Xu9tbz5T+VqP3FmFHEmNm52BoavP/9Aq63/v3/+YWDg4WZDDiJU5/58fPreP3kvBVDy+fHw5H0GhRgw+/uDk4+YlYxl2FHcurM8tFegb0eLiwhKoDNyyDrlTndMe3pobnuyU7NcWGllqpM8Jyyc3x/omrXv8CzhSUha/AUYDaZcn6gmynDw5ee/wDAGiv359Owjg4iBBLKdqM79//XOmecc6voSrMBA+HTz/GteLS1hZlD6vHDzh6SvEiLn/368Nj9hhXr/hjwjXuzFFyO7tH3WFPuU50fmt2c6NotHtPbkWoMME3Cdd/7Mx79QZR/3JDtXsPQemOOtrSgsYcS54tzD7wxabKCIvn3qKbuBuzpKcYPi3J+Pztz7K5cJDtCfD089+C8fCQloYOAyKZnIQj36+9GSWKdWltxmpWcHtz4DCzELaNlZK3FjupxN0iZ90rbEl6f33P71H6pUxcAYLv/uPh8DI6uKgYE6P8N/18o4weDpO567hUv+e7BmwlGh2I3uIjirif9f755+xqEGDdxb51/xaumIABUAU+7Nr3/+bV1yxCHHVpSZ4fu1lRvu3vhZELoUoVej7cbFSnVQMv1xocknZtmTP6jOZlVIWuFsI4m3mGfks+vZ0pab4++yQPD3y2/q/Tv7HflRQwBZP6NwyL5fIRA2k3js0T+xUKvUyq7+L0Oo4/PY/AN3M47DoG7PlTp8zkIGQiGH/v9DuIBHL23+oTTcykdCE2fgwBBzLgDpYeD2cQM8SQAAAABJRU5ErkJggg==" alt="v9DuIBHL23+oTTcykdCE2fgwBBzLgDpYeD2cQM8S" />

9

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAC0AAAASCAIAAABAVMC1AAADlklEQVR4nGP5//8/wyAALAPtACgY7u7492Zbsm7wo5kv9vrxA7n/v1yeU5A79w4b98/Xv7RzZkxM0uZmpKo7/v/+8ZeFgwXFUIa/T1dnJS548dMJqubjgSKvqrd9l/eGSvx/OMdNz7NY5cp0ez4kTRS44++78yt7WmbcdJyzPEeNDUni9715+QvkUo0Z2qDOeLOrffFHuw3uEsxAnlxwgW1+eNuuFrsQEYRDUNzx782+hqiI5j0aiy9W3a7M6996m8W2bf/OSn1OVBf8fn16WXfb7NO8XgWtW1s0eJmQJX9cm5y/zXHiNLGUXqjIt5vbz/2QKpTjAPMYuZVNpX9M2X7jW4gNN3Z3MIk45iSot+19Or9xf2rnqce1TboWM5fdLNQ34ICq+PXy+OLO9oVXxAOKe3d1KnGhRgfQ61/PdBSeDp29WI19A1zw54u7bxl4RHmZIVxmPglehjd3XvxkYMDhDqBnHp26/1fYuXhGu5cI04/zLEzMvGI8zLDgnhvhXPshadHC3b0y7OguALviw8G68seZy2rlWBjeIUL511eglcxszFAtjCxsQFt/fv31D+hz7O74/+XO+ZfctjG2Ikwgv90/95xTTVecFSLJqhg9Ye63tp6W7Mr7ZaXx1pJsKHoZ/r3eWt78p3K1nzgzijgTGzc7A8PXn3+gBeb/3z//MDDwcLMhRyeqO34+On3/n7y3PDgafj45ffevbIYCLE4YGDlknXKnO6Y9PTS3PdmpWS6stDLVSZ4TFjLvD3TN2nd4lvAkJAP9BRgNplyfqCbKcPDl57/AUAGK/fn07CODiIEEO7LNKO74/+Xu2eec6gYS4BD4dvf0M3Y1fQlWVG8zskvbZ02xT3l+ZH57pmOzeERrT661MNACAdd55898/AtV9nFPsnMFS++BOd7aisISRpwrzj38zqDFBrLk9qmn7Abu6lw43fHzMTA45DzkOSGcM/f+yKUgggMVsEnapE/alvjy9J7bvyABziygYmAMl393n4+BkVXFwECdn+G/a2WcYPD0Hc/dwiX/PVgz4ahQ7EZ3EZzl2P+vwODgUDOQBIfA13unH/97e2L5lgfVQQqgpPDjQpNPzLInf1Ddw6qQtMLZRhJvOcTIZ9ezpS03x99lgeDvl9/U+3f2O/KjJnRk/YzCIft+hcB4QoG7f6NUxRwGdXuu1OGzDxkIhRz6/w9hNI9e2vxDabiVD/d6jlQwWNwBAIcFYO9J09EUAAAAAElFTkSuQmCC" alt="d6jlQwWNwBAIcFYO9J09EUAAAAAElFTkSuQmCC" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAASCAIAAACFJlokAAAEWElEQVR4nGP5//8/w9ABLAPtANLAyHHu71dHphfnTOeYfGa2LTeZZvx7sy1ZN/jRzBd7/fiB3P9fLs8pyJ17h4375+tf2jkzJiZpczNS7tx/70/OrOvefv/RgYuvgojS8f/3j78sHCwodjP8fbo6K3HBi59OUDUfDxR5Vb3tu7w3VOL/wzluep7FKlem2/MhaSIzdDmUw3tWpzzpN9raSkjp33fnV/a0zLjpOGd5jhobksTve/PyF8ilGjO0QV37Zlf74o92G9wlmIE8ueAC2/zwtl0tdiEiCPeiOPff2wONkeFNe1Tmny69VpIz4eAvh74Dq30vVcfkzzjDHjzvyNJYObAGJk4RIaB9BBz6+/XpZd1ts0/zehW0bm3R4GVClvxxbXL+NseJ08RSeqEi325uP/dDqlCOA8xj5FY2lf4xZfuNbyE2iKSG4lwmYfvcVK22vY+WTbheuviCb5ueXUt26lW/vA0XXdJUgqcdnBgdK4FiKQ7w6+XxxZ3tC6+IBxT37upU4mJEk///9UxH4enQ2YvV2DfABX++uPuWgUeUlxnCZeaT4GV4c+fFTwYGHM4Fanl06t4ffsucvnJX0R/H//1jYFZM6SqwEfy8g+E/Kz8/BxFu/X1vboRz7YekRQt398qwozsU7NgPB+vKH2cuqwVG1Tu46L9fX4EuY2ZjhmphZGEDOu7n11//gOGI3bn/v9w985zHKdlRlInh36fbl94IusdbCzIy/H5+4fZPqUAFTsKuZWBVjJ4w91tbT0t25f2y0nhrSTZU+X+vt5Y3/6lc7SfOjCLOxMbNzsDw9ecfaLX1//fPPwwMPNxsyEGE6tyfj0/f+yfvpQBKPj8enrzPoBADZn9/cPIRs5KxDDsRzmVg5JB1yp3umPb00Nz2ZKdmubDSylQneU5YOL8/0DVr3+FZwpOQtPgLMBpMuT5RTZTh4MvPf4FhDBT78+nZRwYRAwkUO1Gc+//rnTPPOdT1JViBgfDp5vnXvFpawkCtv19cuPlD0leJixjXwhzNLm2fNcU+5fmR+e2Zjs3iEa09udYgwwRc550/8/EvVNnHPcnOFSy9B+Z4aysKSxhxrjj38DuDFhsoom+fespu4K6OYimKc38+OnPvr1wmOEB/Pjz14L98JCSggYHLpGQiS1TgogI2SZv0SdsSX57ec/sXJJaZBVQMjOHy7+7zMTCyqhgYqPMz/HetjBMMnr7juVu45L8HayYcFYrd6C6Cs5r4//Xu6WccatDAvXX+Fa+WjghQATDl3vz659/WJUcccmxFQRH1+/HmCVN2Xrt+4BbDu3f1aZkGapbJJXHa4Bz840KTT8yyJ39Qnc2qkLTC2UYSbzHPyGfXs6UtN8ffZYHg75ff1Pt39jvyo+ZVZP2MwiH7foVA2EzisUf/xEKtUiu7+r8MxXJZ39JOXyBjPqalHAZ1e67U4XMWMhAKOfT/H8IFPHpp8w+l4VY+cpo4AwGGmHMB0Q6yHI2JMuEAAAAASUVORK5CYII=" alt="H8IFPHpp8w+l4VY+cpo4AwGGmHMB0Q6yHI2JMuEA" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAASCAIAAACFJlokAAAExklEQVR4nGP5//8/w9ABLAPtANLASHDuj0sdwVGz77FJiHL9ePOexyZ/Qk+KIR8TGSb9e7MtWTf40cwXe/34gdz/Xy7PKcide4eN++frX9o5MyYmaXMzUuzc369v/EncdrFYnY3h3/t9WdrOLl/l7izxEGTEreX/7x9/WThYUFX8fbo6K3HBi59OUDUfDxR5Vb3tu7w3VOL/wzluep7FKlem2/MhaSLLuRxqcWWqimwgJpOgWbgD38w9629897Dkwqb477vzK3taZtx0nLM8R40N2dP35uUvkEs1ZmiDuvbNrvbFH+02uEswA3lywQW2+eFtu1rsQkQQ7kVx7r+3Bxojw5v2qMw/XXqtJGfCwV8OfQdW+16qjsmfcYY9eN6RpbFyIA2ssk7OSLr+/mdg42LFDNrfr08v626bfZrXq6B1a4sGL0pq+XFtcv42x4nTxFJ6oSLfbm4/90OqUI4DzGPkVjaV/jFl+41vITbc2J3LJGyfm6rVtvfRsgnXSxdf8G3Ts2vJTr3ql7fhokuaSvC0gxOjYyXQkujvF+evfhZx9VfnRBL89fL44s72hVfEA4p7d3UqcaF75f/XMx2Fp0NnL1Zj3wAX/Pni7lsGHlFeZgiXmU+Cl+HNnRc/GRhwOBeo5dGpe3/4LXP6yl1Ffxz/94+BWTGlq8BG8PMOhv+s/PwcGNnpy9mp0567ddbb8MLdf29uhHPth6RFC3f3yrBjS87/PxysK3+cuawWGFXv4KL/fn0FuoyZjRmqhZGFDei4n19//QOGI3bn/v9y98xzHqdkR1Emhn+fbl96I+gebw3MQb+fX7j9UypQgRNFNcPfV9tK0w4HrNyRII8wh1UxesLcb209LdmV98tK460l2VA1/Xu9tbz5T+VqP3FmFHEmNm52BoavP/9Aq63/v3/+YWDg4WZDDiJU5/58fPreP3kvBVDy+fHw5H0GhRgw+/uDk4+YlYxl2FHcurM8tFegb0eLiwhKoDNyyDrlTndMe3pobnuyU7NcWGllqpM8Jyyc3x/omrXv8CzhSUha/AUYDaZcn6gmynDw5ee/wDAGiv359Owjg4iBBLKdqM79//XOmecc6voSrMBA+HTz/GteLS1hZlD6vHDzh6SvEiLn/368Nj9hhXr/hjwjXuzFFyO7tH3WFPuU50fmt2c6NotHtPbkWoMME3Cdd/7Mx79QZR/3JDtXsPQemOOtrSgsYcS54tzD7wxabKCIvn3qKbuBuzpKcYPi3J+Pztz7K5cJDtCfD089+C8fCQloYOAyKZnIQj36+9GSWKdWltxmpWcHtz4DCzELaNlZK3FjupxN0iZ90rbEl6f33P71H6pUxcAYLv/uPh8DI6uKgYE6P8N/18o4weDpO567hUv+e7BmwlGh2I3uIjirif9f755+xqEGDdxb51/xaumIABUAU+7Nr3/+bV1yxCHHVpSZ4fu1lRvu3vhZELoUoVej7cbFSnVQMv1xocknZtmTP6jOZlVIWuFsI4m3mGfks+vZ0pab4++yQPD3y2/q/Tv7HflRQwBZP6NwyL5fIRA2k3js0T+xUKvUyq7+L0Oo4/PY/AN3M47DoG7PlTp8zkIGQiGH/v9DuIBHL23+oTTcykdCE2fgwBBzLgDpYeD2cQM8SQAAAABJRU5ErkJggg==" alt="v9DuIBHL23+oTTcykdCE2fgwBBzLgDpYeD2cQM8S" />

10

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAC0AAAASCAIAAABAVMC1AAADlklEQVR4nGP5//8/wyAALAPtACgY7u7492Zbsm7wo5kv9vrxA7n/v1yeU5A79w4b98/Xv7RzZkxM0uZmpKo7/v/+8ZeFgwXFUIa/T1dnJS548dMJqubjgSKvqrd9l/eGSvx/OMdNz7NY5cp0ez4kTRS44++78yt7WmbcdJyzPEeNDUni9715+QvkUo0Z2qDOeLOrffFHuw3uEsxAnlxwgW1+eNuuFrsQEYRDUNzx782+hqiI5j0aiy9W3a7M6996m8W2bf/OSn1OVBf8fn16WXfb7NO8XgWtW1s0eJmQJX9cm5y/zXHiNLGUXqjIt5vbz/2QKpTjAPMYuZVNpX9M2X7jW4gNN3Z3MIk45iSot+19Or9xf2rnqce1TboWM5fdLNQ34ICq+PXy+OLO9oVXxAOKe3d1KnGhRgfQ61/PdBSeDp29WI19A1zw54u7bxl4RHmZIVxmPglehjd3XvxkYMDhDqBnHp26/1fYuXhGu5cI04/zLEzMvGI8zLDgnhvhXPshadHC3b0y7OguALviw8G68seZy2rlWBjeIUL511eglcxszFAtjCxsQFt/fv31D+hz7O74/+XO+ZfctjG2Ikwgv90/95xTTVecFSLJqhg9Ye63tp6W7Mr7ZaXx1pJsKHoZ/r3eWt78p3K1nzgzijgTGzc7A8PXn3+gBeb/3z//MDDwcLMhRyeqO34+On3/n7y3PDgafj45ffevbIYCLE4YGDlknXKnO6Y9PTS3PdmpWS6stDLVSZ4TFjLvD3TN2nd4lvAkJAP9BRgNplyfqCbKcPDl57/AUAGK/fn07CODiIEEO7LNKO74/+Xu2eec6gYS4BD4dvf0M3Y1fQlWVG8zskvbZ02xT3l+ZH57pmOzeERrT661MNACAdd55898/AtV9nFPsnMFS++BOd7aisISRpwrzj38zqDFBrLk9qmn7Abu6lw43fHzMTA45DzkOSGcM/f+yKUgggMVsEnapE/alvjy9J7bvyABziygYmAMl393n4+BkVXFwECdn+G/a2WcYPD0Hc/dwiX/PVgz4ahQ7EZ3EZzl2P+vwODgUDOQBIfA13unH/97e2L5lgfVQQqgpPDjQpNPzLInf1Ddw6qQtMLZRhJvOcTIZ9ezpS03x99lgeDvl9/U+3f2O/KjJnRk/YzCIft+hcB4QoG7f6NUxRwGdXuu1OGzDxkIhRz6/w9hNI9e2vxDabiVD/d6jlQwWNwBAIcFYO9J09EUAAAAAElFTkSuQmCC" alt="d6jlQwWNwBAIcFYO9J09EUAAAAAElFTkSuQmCC" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAASCAIAAACFJlokAAAEWElEQVR4nGP5//8/w9ABLAPtANLAyHHu71dHphfnTOeYfGa2LTeZZvx7sy1ZN/jRzBd7/fiB3P9fLs8pyJ17h4375+tf2jkzJiZpczNS7tx/70/OrOvefv/RgYuvgojS8f/3j78sHCwodjP8fbo6K3HBi59OUDUfDxR5Vb3tu7w3VOL/wzluep7FKlem2/MhaSIzdDmUw3tWpzzpN9raSkjp33fnV/a0zLjpOGd5jhobksTve/PyF8ilGjO0QV37Zlf74o92G9wlmIE8ueAC2/zwtl0tdiEiCPeiOPff2wONkeFNe1Tmny69VpIz4eAvh74Dq30vVcfkzzjDHjzvyNJYObAGJk4RIaB9BBz6+/XpZd1ts0/zehW0bm3R4GVClvxxbXL+NseJ08RSeqEi325uP/dDqlCOA8xj5FY2lf4xZfuNbyE2iKSG4lwmYfvcVK22vY+WTbheuviCb5ueXUt26lW/vA0XXdJUgqcdnBgdK4FiKQ7w6+XxxZ3tC6+IBxT37upU4mJEk///9UxH4enQ2YvV2DfABX++uPuWgUeUlxnCZeaT4GV4c+fFTwYGHM4Fanl06t4ffsucvnJX0R/H//1jYFZM6SqwEfy8g+E/Kz8/BxFu/X1vboRz7YekRQt398qwozsU7NgPB+vKH2cuqwVG1Tu46L9fX4EuY2ZjhmphZGEDOu7n11//gOGI3bn/v9w985zHKdlRlInh36fbl94IusdbCzIy/H5+4fZPqUAFTsKuZWBVjJ4w91tbT0t25f2y0nhrSTZU+X+vt5Y3/6lc7SfOjCLOxMbNzsDw9ecfaLX1//fPPwwMPNxsyEGE6tyfj0/f+yfvpQBKPj8enrzPoBADZn9/cPIRs5KxDDsRzmVg5JB1yp3umPb00Nz2ZKdmubDSylQneU5YOL8/0DVr3+FZwpOQtPgLMBpMuT5RTZTh4MvPf4FhDBT78+nZRwYRAwkUO1Gc+//rnTPPOdT1JViBgfDp5vnXvFpawkCtv19cuPlD0leJixjXwhzNLm2fNcU+5fmR+e2Zjs3iEa09udYgwwRc550/8/EvVNnHPcnOFSy9B+Z4aysKSxhxrjj38DuDFhsoom+fespu4K6OYimKc38+OnPvr1wmOEB/Pjz14L98JCSggYHLpGQiS1TgogI2SZv0SdsSX57ec/sXJJaZBVQMjOHy7+7zMTCyqhgYqPMz/HetjBMMnr7juVu45L8HayYcFYrd6C6Cs5r4//Xu6WccatDAvXX+Fa+WjghQATDl3vz659/WJUcccmxFQRH1+/HmCVN2Xrt+4BbDu3f1aZkGapbJJXHa4Bz840KTT8yyJ39Qnc2qkLTC2UYSbzHPyGfXs6UtN8ffZYHg75ff1Pt39jvyo+ZVZP2MwiH7foVA2EzisUf/xEKtUiu7+r8MxXJZ39JOXyBjPqalHAZ1e67U4XMWMhAKOfT/H8IFPHpp8w+l4VY+cpo4AwGGmHMB0Q6yHI2JMuEAAAAASUVORK5CYII=" alt="H8IFPHpp8w+l4VY+cpo4AwGGmHMB0Q6yHI2JMuEA" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAASCAIAAACFJlokAAAExklEQVR4nGP5//8/w9ABLAPtANLASHDuj0sdwVGz77FJiHL9ePOexyZ/Qk+KIR8TGSb9e7MtWTf40cwXe/34gdz/Xy7PKcide4eN++frX9o5MyYmaXMzUuzc369v/EncdrFYnY3h3/t9WdrOLl/l7izxEGTEreX/7x9/WThYUFX8fbo6K3HBi59OUDUfDxR5Vb3tu7w3VOL/wzluep7FKlem2/MhaSLLuRxqcWWqimwgJpOgWbgD38w9629897Dkwqb477vzK3taZtx0nLM8R40N2dP35uUvkEs1ZmiDuvbNrvbFH+02uEswA3lywQW2+eFtu1rsQkQQ7kVx7r+3Bxojw5v2qMw/XXqtJGfCwV8OfQdW+16qjsmfcYY9eN6RpbFyIA2ssk7OSLr+/mdg42LFDNrfr08v626bfZrXq6B1a4sGL0pq+XFtcv42x4nTxFJ6oSLfbm4/90OqUI4DzGPkVjaV/jFl+41vITbc2J3LJGyfm6rVtvfRsgnXSxdf8G3Ts2vJTr3ql7fhokuaSvC0gxOjYyXQkujvF+evfhZx9VfnRBL89fL44s72hVfEA4p7d3UqcaF75f/XMx2Fp0NnL1Zj3wAX/Pni7lsGHlFeZgiXmU+Cl+HNnRc/GRhwOBeo5dGpe3/4LXP6yl1Ffxz/94+BWTGlq8BG8PMOhv+s/PwcGNnpy9mp0567ddbb8MLdf29uhHPth6RFC3f3yrBjS87/PxysK3+cuawWGFXv4KL/fn0FuoyZjRmqhZGFDei4n19//QOGI3bn/v9y98xzHqdkR1Emhn+fbl96I+gebw3MQb+fX7j9UypQgRNFNcPfV9tK0w4HrNyRII8wh1UxesLcb209LdmV98tK460l2VA1/Xu9tbz5T+VqP3FmFHEmNm52BoavP/9Aq63/v3/+YWDg4WZDDiJU5/58fPreP3kvBVDy+fHw5H0GhRgw+/uDk4+YlYxl2FHcurM8tFegb0eLiwhKoDNyyDrlTndMe3pobnuyU7NcWGllqpM8Jyyc3x/omrXv8CzhSUha/AUYDaZcn6gmynDw5ee/wDAGiv359Owjg4iBBLKdqM79//XOmecc6voSrMBA+HTz/GteLS1hZlD6vHDzh6SvEiLn/368Nj9hhXr/hjwjXuzFFyO7tH3WFPuU50fmt2c6NotHtPbkWoMME3Cdd/7Mx79QZR/3JDtXsPQemOOtrSgsYcS54tzD7wxabKCIvn3qKbuBuzpKcYPi3J+Pztz7K5cJDtCfD089+C8fCQloYOAyKZnIQj36+9GSWKdWltxmpWcHtz4DCzELaNlZK3FjupxN0iZ90rbEl6f33P71H6pUxcAYLv/uPh8DI6uKgYE6P8N/18o4weDpO567hUv+e7BmwlGh2I3uIjirif9f755+xqEGDdxb51/xaumIABUAU+7Nr3/+bV1yxCHHVpSZ4fu1lRvu3vhZELoUoVej7cbFSnVQMv1xocknZtmTP6jOZlVIWuFsI4m3mGfks+vZ0pab4++yQPD3y2/q/Tv7HflRQwBZP6NwyL5fIRA2k3js0T+xUKvUyq7+L0Oo4/PY/AN3M47DoG7PlTp8zkIGQiGH/v9DuIBHL23+oTTcykdCE2fgwBBzLgDpYeD2cQM8SQAAAABJRU5ErkJggg==" alt="v9DuIBHL23+oTTcykdCE2fgwBBzLgDpYeD2cQM8S" />

对于所有数据aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEEAAAASCAIAAACLjyRLAAAECUlEQVR4nGP5//8/wxAHLAPtACqA4eqH36+OTC/Omc4x+cxsW266u4iB4d+bbcm6wY9mvtjrxw/k/v9yeU5B7tw7bNw/X//SzpkxMUmbmxFZPZof/r0/ObOue/v9RwcuvgoibNv/3z/+snCwMBJWSbz2v09XZyUuePHTCarm44Eir6q3fZf3hkr8fzjHTc+zWOXKdHs+JE3o8cChHN6zOuVJv9HWVrzW/313fmVPy4ybjnOW56ixkex6nNp/35uXv0Au1ZihDeqFN7vaF3+02+AuwQzkyQUX2OaHt+1qsQsRQXgCzQ9MnCJCQIPwWf/79ell3W2zT/N6FbRubdHgZYII/3uzryEqonmPxuKLVbcr8/q33maxbdu/s1KfkyjtEPDj2uT8bY4Tp4ml9EJFvt3cfu6HVKEcB5jHyK1sKv1jyvYb30JsEKmclDz96+XxxZ3tC6+IBxT37upU4kJJA0wijjkJ6m17n85v3J/aeepxbZOuxcxlNwv1DTiI0Q4E/7+e6Sg8HTp7sRr7Brjgzxd33zLwiPIyQ7jMfBK8DG/uvPjJwEC6H37fmxvhXPshadHC3b0y7FgzwI9Hp+7/FXYuntHuJcL04zwLEzOvGA8zsdr/fzhYV/44c1mtHAvDO7jov19fgc5lZmOGamFkYQO6+OfXX/+AoUaqH1gVoyfM/dbW05Jdeb+sNN5aEiMP/P9y5/xLbtsYWxEmUJjeP/ecU01XnJU47f9eby1v/lO52k+cGUWciY2bnYHh688/0Ir4/++ffxgYeLjZkJMg0WmJkUPWKXe6Y9rTQ3Pbk52a5cJKK1Od5DkRQfrz0en7/+S95cFJ5+eT03f/ymYocBCp/f2Brln7Ds8SnoRko78Ao8GU6xPVRBkOvvz8FxgbQLE/n559ZBAxkGBHdhqJdRwju7R91hT7lOdH5rdnOjaLR7T25FoLg0z//+Xu2eec6gYS4JD/dvf0M3Y1fQlWIrULuM47f+bjX6iyj3uSnStYeg/M8dZWFJYw4lxx7uF3Bi02kCW3Tz1lN3BX56LAD1DAJmmTPmlb4svTe27/gsbyz8fAaJDzkOeEcM7c+yOXgogGQtqZBVQMjOHy7+7zMTCyqhgYqPMz/HetjBMMnr7juVu45L8HayYcFYrd6C6Cr477/XjzhCk7r10/cIvh3bv6tEwDNcvkkjhtboYfF5p8YpY9+YOqnFUhaYWzjSQLKAMAo4FDzUASHPJf751+/O/tieVbHlQHKYCSPiHtuAEjn13PlrbcHH+XBYK/X35T79/Z78iPWiig6WeV9S3t9AUy5qMZxWFQt+dKHR6rhEP2/QqB8YQCd/9GaQ4T0o4KhEIO/f+HMJpHL23+oTTcyodrm2+ogeHgBwDZztV2P3D1AAAAAABJRU5ErkJggg==" alt="f+HMJpHL23+oTTcyodrm2+ogeHgBwDZztV2P3D1A" />aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAGoAAAASCAIAAAA8MtxsAAAF4klEQVR4nGP5//8/wyggF7AMtAOGNhgNPooAevD9/3J5TkHu3Dts3D9f/9LOmTExSZubkSY2/351ZHpxznSOyWdm23JTZtSPSx3BUbPvsUmIcv14857HJn9CT4ohHxMZJv17sy1ZN/jRzBd7/fgZiAgN1OD7//FAkVfV277Le0Ml/j+c46bnWaxyZbo9H54A/P/7x18WDhaSgvjf+5Mz67q333904OKrIFI04gC/X9/4k7jtYrE6G9DofVnazi5f5e4s8RAk1dl/n67OSlzw4qcTVA3h0EAJvv9vdrUv/mi3wV2CGciTCy6wzQ9v29ViFyKCzSF/351f2dMy46bjnOU5amwk+ZdDObxndcqTfqOtrSTpw2WcWlyZqiLYCUyCZuEOfDP3rL/x3cOSC5tinM7+fW9e/gK5VGOGNgifmNBACb5vN7ef+yFVKMcB5jFyK5tK/5iy/ca3EBvU3PX79ell3W2zT/N6FbRubdHghWaTf28PNEaGN+1RmX+69FpJzoSDvxz6Dqz2vVQdkz/jDHvwvCNLY+XA9jFxiggBTSEYLMQayCrr5Iyk6+9/BjYuVswYx+FsCPhxbXL+NseJ08RSekkIDZTg+/ni7lsGHlFeZgiXmU+Cl+HNnRc/GRhgGn69PL64s33hFfGA4t5dnUpcKG5kErbPTdVq2/to2YTrpYsv+Lbp2bVkp171y9tw0SVNJXjawYnRsRKklEjkGPj7xfmrn0Vc/dU5kQTxOhsI/n8901F4OnT2YjX2DSSEBmrw/fv1FSjHzMYMNZ2RhQ0o/fPrr39An4AS99wI59oPSYsW7u6VYcdarvx8dOreH37LnL5yV9Efx//9Y2BWTOkqsBH8vIPhPys/PwfJpTnJBn45O3Xac7fOehtemAhhZ///cLCu/HHmslpgUn5HbGhAAHLwMbFxszMwfP35B9qQ/v/75x8GBh5uNohqVsXoCXO/tfW0ZFfeLyuNt5bEKO/+f7l75jmPU7KjKBPDv0+3L70RdI+3Bhbgv59fuP1TKlCBE10DIUCigX9fbStNOxywckeCPMJfhJz97/XW8uY/lav9xJlRxAmEBgSgZF4OSTVRhoMvP/8FhjqQ++fTs48MIgYS7FBpRg5Zp9zpjmlPD81tT3ZqlgsrrUx1kudEROjPx6fv/ZP3UgCVFj8enrzPoBADZn9/cPIRs5KxDDsDiYAUA/++2lke2ivQt6PFRQQlURJw9vsDXbP2HZ4lPAlJi78Ao8GU6xPxhgZm8HGqexhxrjj38DuDFhso6m+fespu4K6OWoExskvbZ02xT3l+ZH57pmOzeERrT661MMiC/1/vnHnOoa4vwQqM0083z7/m1dICSfx+ceHmD0lfJawVIT5AvIG/H6/NT1ih3r8hz4gXe3MFp7MFXOedP/PxL1TZxz3JzhUsvQfmeGsrCksQDA2U4GMUdq2MEwyevuO5W7jkvwdrJhwVit3ojrXVwsAmaZM+aVviy9N7bv+CJu+fj87c+yuXCU4fPx+eevBfPhKSboBphUnJRJZQ4vt0ME3XZb3O9FMbUhRZSTDw96MlsU6tLLnNSs8Obn0GFmIW0LKzVsLS4Md0NrOAioExXP7dfT4GRlYVAwN1fob/hEMDtdnMyGfXs6UtN8ffZYHg75ff1Pt39jvyw9T/uNDkE7PsyR9U97AqJK1wtpFkAaWVu6efcahB08qt8694tXREgOLAgurm1z//ti454pBjKwpKpr8fb54wZee16wduMbx7V5+WaaBmmVwSp80mpCTH/mb32mvfIcFHrIHfr63ccPfGz4LQpQhnabTduFipzkaEs3EDvKGBLfiAWnj00uYfSsNmGodB3Z4rdXhsEw7Z9ysEwmYSjz36JxbqUrWyq//LUNwu61va6QtkzEc1QbdkUfuW6B+qnKQZyOex+QfuYSNCzkYFQiGH/v9DeAl3aEDAIBoy+HFnVUP1icDJM1RZB9opRINBFHwMXNpps0OUyOrqDxQYRMHHIaWtNNBuIBUAAA9YYiD7iLDZAAAAAElFTkSuQmCC" alt="v9DeAl3aEDAIBoy+HFnVUP1icDJM1RZB9opRINBF" />aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAACcAAAASCAIAAABXdlB8AAACr0lEQVR4nGP5//8/A90BC/2tHLWVePD/+/3Dhz9oOxsKM9PN1v8fj1QHV4st2u1GslZ0W/+9OzYhK6Z4g9LSB7uiJP7eneZq0KS8/e5cG24Ghj9f37z59Bua5P9/OdWQfthz+mrRH7/+c7Axwgz49WBVZVxK35Pci9db9dgZft3ostGpYJz5+FiyNDNOW5mErAqnTji8LXjK5qfhSew3r/7166234AZJ/Xm2qTpt1q2fYMd9unH4IouxtUpD0jXH7qV1xlwwA9gUwhpqV8/2OXHry389dkY2BVcHxamfNAVR4gBLCDMKOxWGCzlNnrXw3vldWjPmRclBFLHIRc7cEQli/X22ItpTvHjbsihpbDHEqWqv/Lfr+IOfIcIcP+9u3i+avcSEC0UF1njlMctOkp3T0ht05mSWNhcjmuyvu7NSOvk6dkdgtRJkppihidCLUzc+/jf8sqN1k1HLXjU2NBVYdP17c3TlcWZOhrfPvzMgWfn73uzwwJ6Lz27d+ySlolhoo1UIDhkhr7m7+6y4kQ3gULZXY9x67P57vZ3dHzKW2fGjOxzD1n/vDtTGTpfo3zo5T69owoF2ax8hqB5WpdR1J8zb3NO+9uxpMeNBNwkJMAloW0m+3bdvwfNdtk275TB9hiry/9OJhsDKf2078gx5X+c55cX2bX3uGSsFSwlfz7ZnbHWZsRuvlWDPKthoMnU3dCmsuGTEhUUexdbft2ektFw12qHNx8jAKOqa78PhWZHdyj+p0k+WFSTPbVh/+AgzMwErwSrV7RQ5n8e3+IgxYZNGsZVVrezKvzIoh1HAY+UHtPqIiZnIQujn65fiSf0Z6mzYpWlSDv+6vaDnddo0zFREC1t/31vSfcez3OxGe+HxwKmLpHCHCzVt/fV490Sv7KnqjgVzF8TK4zMZAOWjAHxvRQKxAAAAAElFTkSuQmCC" alt="fV490Sv7KnqjgVzF8TK4zMZAOWjAHxvRQKxAAAAA" />aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAEsAAAASCAIAAACcrbSCAAAEVklEQVR4nGP5//8/w7AGLAPtAJqDkenD36+OTC/Omc4x+cxsW266u4jaAM2H/96fnFnXvf3+owMXXwUR1v3/94+/LBwsjLRxG3UsRY9DDuXwntUpT/qNtrbi1ff33fmVPS0zbjrOWZ6jxkaWS0kHZFmK5kMmThEhYDLFp+P369PLuttmn+b1Kmjd2qLBywSX+ffu2ISsmOINSksf7IqS+Ht3mqtBk/L2u3NtcCb1Xw9WVcal9D3JvXi9VY+d4deNLhudCsaZj48lSzMTY+m/N/saoiKa92gsvlh1uzKvf+ttFtu2/Tsr9Tlx+hAv+PXy+OLO9oVXxAOKe3d1KnGhpxMmIavCqRMObwuesvlpeBL7zat//XrrLfDlZDaFsIba1bN9Ttz68l+PnZFNwdVBceonTUEk7+G1lEnEMSdBvW3v0/mN+1M7Tz2ubdK1mLnsZqG+AQfJPvx9b26Ec+2HpEULd/fKsOPMA4zCToXhQk6TZy28d36X1ox5UXKELOBUtVf+23X8wc8QYY6fdzfvF81eYsJFvKU/Hp26/1fYuXhGu5cI04/zLEzMvGI8KPFPrA9ZFaMnzP3W1tOSXXm/rDTeWhJXNuAxy06SndPSG3TmZJY2RjRjAhYxQxOhF6dufPxv+GVH6yajlr2IHEbY0v9f7px/yW0bYysCTLf/v94/95xTTVeclRwfMjByyDrlTndMe3pobnuyU7NcWGllqpM8J7oX/r05uvI4MyfD2+ffGYgr7TiU7dUYtx67/15vZ/eHjGV2/EjaCFr689Hp+//kveXBifLnk9N3/8pmKHCgmE9ijc/ILm2fNcU+5fmR+e2Zjs3iEa09udbCsFTx792B2tjpEv1bJ+fpFU040G7tI0TYl0wC2laSb/ftW/B8l23TbmypGrel/7/cPfucU91AAhxr3+6efsaupi+BEoVktmnYJG3SJ21LfHl6z+1fsGbt/08nGgIr/7XtyDPkfZ3nlBfbt/W5Z6wUIk/8OF9tYjlNou/M9ixlZEdwKNhoMnU3dCmsuGTExYAbYLH052NgFMp5yHNCOGfu/ZFLQYtCdB/+frx5wpSd164fuMXw7l19WqaBmmVySZw2N8OPC00+Mcue/EFVzqqQtMLZRhJkyO/bM1Jarhrt0OZjZGAUdc334fCsyG7ln1TpJwv1DhOvtDT7hwObb3xH9SEDt7qdIufz+BYfMSZU4wlZ+v8rMAo51AwkwcZ9vXf68b+3J5ZveVAdpIDIsWg+ZJX1Le30BTLmowUgh0Hdnit1DLgBq1rZlX9lUA6jgMfKD+h9FjaVtJltK6K+qnKiSfx8/VI8qT9DHaMcIWQpo3DIvl8hMJ5Q4O7fWPpJdGt5//90cUFdy6mw6dNUUfPJr9sLel6nTUMpYagJ6OdDJn6zogUJctxQj/y+t6T7jme52Y32wuOBUxdJMePXTj6gmw+ZeBS0eZD4vx7vnuiVPVXdsWDuglh5GjoDAFTk6lOKDYVHAAAAAElFTkSuQmCC" alt="y+t6T7jme52Y32wuOBUxdJMePXTj6gmw+ZeBS0eZ" /> 。请注意使用64位整型。

思路:本来想要折半枚举,然后再搜索另一半的,没想到TM直接爆搜能过,天理难容啊

 #include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#define ll long long
int a[][],first[],tot,next[],id[],go[];
int n,m1,m2;
ll ans=;
int read(){
int t=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
void dfs(int x,ll sum){
if (x==n+){
ans+=sum;return;
}
if (!a[x][]&&!a[x][]){
if (first[x]){
a[x][]++;
dfs(x+,sum);
a[x][]--;
a[x][]++;
int i;
for (i=first[x];i;i=next[i]){
int pur=go[i];
if (a[pur][!id[i]]) break;
if (pur<x&&!a[pur][]&&!a[pur][]) sum>>=;
a[pur][id[i]]++;
}
if (!i) dfs(x+,sum);
a[x][]--;
for (int j=first[x];j!=i;j=next[j]){
int pur=go[j];
a[pur][id[j]]--;
}
}else dfs(x+,sum*2LL);
}else if (a[x][]) dfs(x+,sum);
else{
int i;
for (i=first[x];i;i=next[i]){
int pur=go[i];
if (a[pur][!id[i]]) break;
if (pur<x&&!a[pur][]&&!a[pur][]) sum>>=;
a[pur][id[i]]++;
}
if (!i) dfs(x+,sum);
for (int j=first[x];j!=i;j=next[j]){
int pur=go[j];
a[pur][id[j]]--;
}
}
}
int main(){
n=read();m1=read();m2=read();
for (int i=;i<=m1;i++){
int x=read(),y=read();
tot++;
go[tot]=y;
id[tot]=;
next[tot]=first[x];
first[x]=tot;
}
for (int i=;i<=m2;i++){
int x=read(),y=read();
tot++;
go[tot]=y;
id[tot]=;
next[tot]=first[x];
first[x]=tot;
}
dfs(,(ll));
printf("%lld\n",ans);
}