UVA1660 Cable TV Network (无向图的点连通度)

时间:2024-11-05 18:34:53

题意:求一个无向图的点连通度。

把一个点拆成一个入点和一个出点,之间连一条容量为1的有向边,表示能被用一次。最大流求最小割即可。

一些细节的东西:1.源点固定,汇点要枚举一遍,因为最小割割断以后会形成连通分量,在分割以后那个连通分量里的割会更大。

2.每次枚举重建一下图。3.从入点进,出点出,才认为是经过了一个原来的点,那么源点和汇点是不必经过的,所以一个在出点,另外一个枚举入点。

#include<bits/stdc++.h>
using namespace std; const int maxn = ; struct Edge
{
int v,cap,nxt;
}; vector<Edge> E;
vector<Edge> bak;
#define PB push_back int head[maxn]; void AddEdge(int u,int v,int c)
{
bak.PB({v,c,head[u]});
head[u] = bak.size()-;
bak.PB({u,,head[v]});
head[v] = bak.size()-;
} int S,T,cur[maxn],d[maxn],q[maxn]; bool bfs()
{
memset(d,,sizeof(d));
int l = , r = ;
q[r++] = S; d[S] = ;
while(r>l){
int u = q[l++];
for(int i = head[u]; ~i; i = E[i].nxt){
Edge &e = E[i];
if(!d[e.v] && e.cap>){
d[e.v] = d[u] + ;
q[r++] = e.v;
}
}
}
return d[T];
} int dfs(int u,int a)
{
if(u == T||!a) return a;
int flow = ,f;
for(int &i = cur[u]; ~i; i = E[i].nxt){
Edge &e = E[i];
if(d[e.v] == d[u]+ && (f = dfs(e.v,min(a,e.cap)))>){
flow += f; a -= f;
e.cap -= f; E[i^].cap += f;
if(!a) break;
}
}
return flow;
} const int INF = 0x3f3f3f3f; int MaxFlow()
{
int flow = ;
while(bfs()){
memcpy(cur,head,sizeof(head));
flow += dfs(S,INF);
}
return flow;
}
int n,m; void init()
{
memset(head,-,sizeof(head));
bak.clear();
} int main()
{
//freopen("in.txt","r",stdin);
while(~scanf("%d%d",&n,&m)){
init();
for(int i = ; i < n; i++) AddEdge(i,i+n,);
for(int i = ; i < m; i++){
int u,v; scanf(" (%d,%d)",&u,&v);
AddEdge(u+n,v,INF); AddEdge(v+n,u,INF);
}
int ans = n;
S = n;
for(T = ; T < n; T++){
E = bak;
ans = min(ans,MaxFlow());
}
printf("%d\n",ans);
}
return ;
}