小明系列问题——小明序列
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Total Submission(s): 2686 Accepted Submission(s): 824
Problem Description
大家都知道小明最喜欢研究跟序列有关的问题了,可是也就因为这样,小明几乎已经玩遍各种序列问题了。可怜的小明苦苦地在各大网站上寻找着新的序列问题,可是找来找去都是自己早已研究过的序列。小明想既然找不到,那就自己来发明一个新的序列问题吧!小明想啊想,终于想出了一个新的序列问题,他欣喜若狂,因为是自己想出来的,于是将其新序列问题命名为“小明序列”。
提起小明序列,他给出的定义是这样的: ①首先定义S为一个有序序列,S={ A1 , A2 , A3 , ... , An },n为元素个数 ; ②然后定义Sub为S中取出的一个子序列,Sub={ Ai1 , Ai2 , Ai3 , ... , Aim },m为元素个数 ; ③其中Sub满足 Ai1 < Ai2 < Ai3 < ... < Aij-1 < Aij < Aij+1 < ... < Aim ; ④同时Sub满足对于任意相连的两个Aij-1与Aij都有 ij - ij-1 > d (1 < j <= m, d为给定的整数); ⑤显然满足这样的Sub子序列会有许许多多,而在取出的这些子序列Sub中,元素个数最多的称为“小明序列”(即m最大的一个Sub子序列)。 例如:序列S={2,1,3,4} ,其中d=1; 可得“小明序列”的m=2。即Sub={2,3}或者{2,4}或者{1,4}都是“小明序列”。
当小明发明了“小明序列”那一刻,情绪非常激动,以至于头脑凌乱,于是他想请你来帮他算算在给定的S序列以及整数d的情况下,“小明序列”中的元素需要多少个呢?
提起小明序列,他给出的定义是这样的: ①首先定义S为一个有序序列,S={ A1 , A2 , A3 , ... , An },n为元素个数 ; ②然后定义Sub为S中取出的一个子序列,Sub={ Ai1 , Ai2 , Ai3 , ... , Aim },m为元素个数 ; ③其中Sub满足 Ai1 < Ai2 < Ai3 < ... < Aij-1 < Aij < Aij+1 < ... < Aim ; ④同时Sub满足对于任意相连的两个Aij-1与Aij都有 ij - ij-1 > d (1 < j <= m, d为给定的整数); ⑤显然满足这样的Sub子序列会有许许多多,而在取出的这些子序列Sub中,元素个数最多的称为“小明序列”(即m最大的一个Sub子序列)。 例如:序列S={2,1,3,4} ,其中d=1; 可得“小明序列”的m=2。即Sub={2,3}或者{2,4}或者{1,4}都是“小明序列”。
当小明发明了“小明序列”那一刻,情绪非常激动,以至于头脑凌乱,于是他想请你来帮他算算在给定的S序列以及整数d的情况下,“小明序列”中的元素需要多少个呢?
Input
输入数据多组,处理到文件结束; 输入的第一行为两个正整数 n 和 d;(1<=n<=10^5 , 0<=d<=10^5) 输入的第二行为n个整数A1 , A2 , A3 , ... , An,表示S序列的n个元素。(0<=Ai<=10^5)
Output
请对每组数据输出“小明序列”中的元素需要多少个,每组测试数据输出一行。
Sample Input
2 0
1 2
5 1
3 4 5 1 2
5 2
3 4 5 1 2
1 2
5 1
3 4 5 1 2
5 2
3 4 5 1 2
Sample Output
2
2
1
2
1
Source
题解:
经典的算法在数组中保留都是下标节点比当前点小的节点,因为从前往后处理也因为经典的算法其实处理的是间隔d=0的特殊情况,那么稍微进行一下推广,当我们处理完第 i 个元素只是把第 i - d 号元素放到数组中,放入的位置就是以前求出来的最长上升子序列长度,当然放入的时候要比较一下是否需要替换。
代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<vector>
#define LL long long
using namespace std;
const int MAXN = 1e5 + ;
const int INF = 0x3f3f3f3f;
int a[MAXN];
int p[MAXN];
int v[MAXN];
int n, d;
int erfen(int x){
int l = , r = n, mid, ans = ;
while(l <= r){
mid = (l + r) >> ;
if(v[mid] >= x){
ans = mid;
r = mid - ;
}
else
l = mid + ;
}
return ans;
}
int work(){
int j, ans = ;
for(int i = ; i <= n; i++){
p[i] = erfen(a[i]);
ans = max(ans, p[i]);
j = i - d;
if(j > && v[p[j]] > a[j]){
v[p[j]] = a[j];
}
}
return ans;
}
int main(){
while(~scanf("%d%d", &n, &d)){
for(int i = ; i <= n; i++){
scanf("%d", a + i);
v[i] = INF;
}
printf("%d\n", work());
}
return ;
}
还可以用线段树,先放着,回头看 http://www.cnblogs.com/Lyush/p/3355622.html