bzoj 2655: calc [容斥原理 伯努利数]

时间:2023-03-08 17:04:29

2655: calc

题意:长n的序列,每个数\(a_i \in [1,A]\),求所有满足\(a_i\)互不相同的序列的\(\prod_i a_i\)的和


clj的题

一下子想到容斥,一开始从普通容斥的角度考虑,问题在于“规定两个相同,剩下的任意选还可能出现两个相同”

扫了一眼TA的题解,发现他用\(f_i\)表示长i序列的答案。这样的话就很科学了,规定i个相同其他任选时只会多统计i+1个的

\[f(i) = s(1) f(i-1) - \binom{i-1}{1} s(2) f(i-2) + \binom{i-1}{2} s(3) f(i-3) -...\\
s(m) = \sum_{i=1}^A i^m
\]

但这样写是不对的!

昨天晚上还不是很理解,今天早上来想明白了!

统计两个相同时,每个三个相同其实多统计了\(\binom{2}{1}\)次!

对于i个相同,多统计的次数为\(\prod_{j=2}^{i-1} \binom{j}{j-1} = (i-1)!\)

所以最后的式子还要乘上个阶乘

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N = 505;
inline int read(){
char c=getchar(); int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
} int A, n, mo, inv2;
inline ll Pow(ll a, int b) {
ll ans = 1;
for(; b; b >>= 1, a = a * a %mo)
if(b & 1) ans = ans * a %mo;
return ans;
}
ll inv[N], fac[N], facInv[N], b[N], sum, s[N], ans, f[N];
inline ll C(int n, int m) {return fac[n] * facInv[m] %mo * facInv[n-m] %mo;}
void init() {
inv[1] = fac[0] = facInv[0] = 1;
for(int i=1; i<=n+1; i++) {
if(i != 1) inv[i] = (mo - mo/i) * inv[mo%i] %mo;
fac[i] = fac[i-1] * i %mo;
facInv[i] = facInv[i-1] * inv[i] %mo;
}
b[0] = 1; b[1] = mo - inv2;
for(int m=2; m<=n; m++) if(~m&1) {
for(int k=0; k<m; k++) b[m] = (b[m] - C(m+1, k) * b[k]) %mo;
b[m] = b[m] * Pow(m+1, mo-2) %mo;
if(b[m] < 0) b[m] += mo;
}
b[1] = inv2;
static ll mi[N];
mi[0] = 1;
for(int i=1; i<=n+1; i++) mi[i] = mi[i-1] * A %mo;
for(int m=1; m<=n; m++) {
ll t = 0;
for(int k=0; k<=m; k++) t = (t + C(m+1, k) * b[k] %mo * mi[m+1-k] %mo) %mo;
s[m] = t * inv[m+1] %mo;
}
} int main() {
freopen("in", "r", stdin);
A=read(); n=read(); mo=read(); inv2 = (mo+1)/2;
init();
f[0] = 1;
for(int i=1; i<=n; i++) {
ll t = s[1] * f[i-1] %mo;
for(int j=2; j<=i; j++) t = (t + ((j&1) ? 1 : -1) * C(i-1, j-1) * fac[j-1] %mo * s[j] %mo * f[i-j] %mo ) %mo;
f[i] = t;
}
printf("%lld\n", (f[n] + mo) %mo);
}