《University Calculus》-chaper8-无穷序列和无穷级数-p级数

时间:2021-10-09 08:47:19

Q:定义p级数有如下形式,讨论p级数的敛散性。(p>o)

《University Calculus》-chaper8-无穷序列和无穷级数-p级数

我们以p = 1作为分界点,因为实践表明这个分界点是最优区分度的。那么下面我们进行分情况讨论。

在这之前,我们有必要先引入一个检验敛散性的方法——积分检验法。

所谓积分检验法,就是将级数的通项看成一个函数表达式,而求解无穷级数也就是求解无穷项的和的时候,其实恰恰对应着函数求积分的过程,因此我们在判断无穷级数敛散性的时候,我们可以借助积分这个工具来进行间接的判断。给出下面的图便一目了然。

《University Calculus》-chaper8-无穷序列和无穷级数-p级数

原则上这个方法的正确性是需要证明的,在《托马斯大学微积分》中也给出了详尽的证明,考虑其原理非常简单易懂,笔者这里就不做累述了。

(1)p >1:

《University Calculus》-chaper8-无穷序列和无穷级数-p级数

级数收敛。

(2)p<1:

采取相同的策略,得到的结果是无穷,级数发散。

(3)p=1:

我们会得到著名的调和级数,在这里呈现出一种最简单的证明方法:

∑1/p = 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16)…可以看到每个括号里的和都大于1/2,而显然这个无穷级数能够继续进行这种“套括号”因此∑1/p趋于无穷,级数发散。