对于第一问,跑一遍最大流即可.
对于第二问,在残量网络上的两点间建立边 <u,v>,容量为无限大,费用为扩充费用.
跑一遍最小费用流即可.
Code:
#include <vector>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <cstring>
#define setIO(s) freopen(s".in","r",stdin)
#define inf 100000000
#define maxn 100000
#define ll long long
using namespace std;
struct Edges{
int u,v,c,w;
}EDGE[maxn];
int n,m,k,s,t;
struct Edge{
int from,to,cap,cost;
Edge(int u,int v,int c,int f) : from(u),to(v),cap(c),cost(f){}
};
vector<int>G[maxn];
vector<Edge>edges;
void addedge(int u,int v,int c,int f){
edges.push_back(Edge(u,v,c,f));
edges.push_back(Edge(v,u,0,-f));
int o = edges.size();
G[u].push_back(o - 2);
G[v].push_back(o - 1);
}
namespace Dinic{
int d[maxn],vis[maxn];
queue<int>Q;
int BFS(){
memset(vis,0,sizeof(vis));
vis[s] = 1,d[s] = 0; Q.push(s);
while(!Q.empty()){
int u = Q.front(); Q.pop();
int sz = G[u].size();
for(int i=0;i<sz;++i) {
Edge r = edges[G[u][i]];
if(!vis[r.to] && r.cap > 0) {
d[r.to] = d[u] + 1;
vis[r.to] = 1;
Q.push(r.to);
}
}
}
return vis[t];
}
int current[maxn];
int DFS(int x,int cur){
if(x==t) return cur;
int flow=0,f;
int sz = G[x].size();
for(int i=current[x];i<sz;++i) {
int u = G[x][i];
Edge r = edges[u];
if(d[r.to] == d[x] + 1 && r.cap > 0){
f = DFS(r.to,min(cur,r.cap));
if(f > 0) {
flow += f;
cur -= f;
edges[u].cap -= f;
edges[u^1].cap += f;
}
}
if(cur==0) break;
}
return flow;
}
int maxflow(){
int flow=0;
while(BFS()){
memset(current,0,sizeof(current));
flow += DFS(s,inf);
}
return flow;
}
};
namespace MCMF{
queue<int>Q;
int d[maxn],inq[maxn];
int flow2[maxn],a[maxn];
long long ans;
int SPFA(){
for(int i=0;i<maxn;++i) d[i] = flow2[i] = inf;
memset(inq,0,sizeof(inq));
inq[s] = 1; d[s] = 0;
Q.push(s);
while(!Q.empty()){
int u=Q.front();Q.pop(); inq[u] = 0;
int sz = G[u].size();
for(int i=0;i<sz;++i) {
Edge r = edges[G[u][i]];
if(r.cap > 0 && d[r.to] > d[u] + r.cost) {
d[r.to] = d[u] + r.cost;
a[r.to] = G[u][i];
flow2[r.to] = min(flow2[u],r.cap);
if(!inq[r.to]) {
inq[r.to] = 1;
Q.push(r.to);
}
}
}
}
if(flow2[t] == inf) return 0;
int f = flow2[t];
edges[a[t]].cap -= f, edges[a[t] ^ 1].cap += f;
int u = edges[a[t]].from;
while(u != s){
edges[a[u]].cap -= f;
edges[a[u]^1].cap += f;
u = edges[a[u]].from;
}
ans += (ll)(d[t] * f);
return 1;
}
long long getcost(){
while(SPFA());
return ans;
}
};
int main(){
//setIO("input");
scanf("%d%d%d",&n,&m,&k);
s = 1, t = n;
for(int i = 1;i <= m; ++i) scanf("%d%d%d%d",&EDGE[i].u,&EDGE[i].v,&EDGE[i].c,&EDGE[i].w);
for(int i = 1;i <= m; ++i)
addedge(EDGE[i].u,EDGE[i].v,EDGE[i].c,0);
printf("%d ",Dinic::maxflow());
for(int i = 1;i <= m; ++i)
addedge(EDGE[i].u,EDGE[i].v,inf,EDGE[i].w);
s = 0 , t = n + 1;
addedge(s,1,k,0);
addedge(n,n+1,k,0);
printf("%lld",MCMF::getcost());
return 0;
}