elasticsearch篇之mapping

时间:2023-03-08 16:58:33

2018年05月17日 18:01:37 lyzkks 阅读数:444更多

个人分类: Elastic stack
版权声明:文章内容来自于网络和博主自身学习体会,转载请注明出处,欢迎留言大家一起讨论学习~~ https://blog.****.net/sinat_35930259/article/details/80354732

什么是mapping


mapping是类似于数据库中的表结构定义,主要作用如下:

  • 定义index下的字段名
  • 定义字段类型,比如数值型、浮点型、布尔型等
  • 定义倒排索引相关的设置,比如是否索引、记录position等

查看mapping


GET /[index_name]/_mapping
  • 1

elasticsearch篇之mapping

其中 keyword表示部分次的字符串类型

自定义mapping


api

elasticsearch篇之mapping

说明

mapping中的字段类型一旦设置,禁止直接修改,因为 lucene实现的倒排索引生成后不允许修改,应该重新建立新的索引,然后做reindex操作。

但是可以新增字段,通过 dynamic 参数来控制字段的新增,这个参数的值如下:

  • true:默认值,表示允许选自动新增字段
  • false:不允许自动新增字段,但是文档可以正常写入,但无法对字段进行查询等操作
  • strict:严格模式,文档不能写入,报错 
    elasticsearch篇之mapping

示例

首先创建名为 my_index的索引并设置mapping:

PUT my_index
{
"mappings": {
"doc": {
"dynamic": false,
"properties": {
"title": {
"type": "text"
},
"name": {
"type": "keyword"
},
"age": {
"type": "integer"
}
}
}
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

其中包含了 title、name、age三个字段

查询索引的mapping设置:

GET my_index/_mapping
  • 1

elasticsearch篇之mapping

然后写入一个文档:

PUT my_index/doc/1
{
"title": "hello world",
"desc": "this is book"
}
  • 1
  • 2
  • 3
  • 4
  • 5

elasticsearch篇之mapping

注意,这里在mapping设置中,”dynamic”: false,表示在写入文档时,如果写入字段不存在也不会报错。这里的desc字段就是不存在的字段。

查询一下写入的文档:

GET my_index/doc/_search
{
"query": {
"match": {
"title": "hello"
}
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

elasticsearch篇之mapping

可以通过 title字段查询到文档的内容

如果说想通过desc字段查询文档内容呢?当然是查不到的:

GET my_index/doc/_search
{
"query": {
"match": {
"desc": "book"
}
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

elasticsearch篇之mapping

可以验证一下”dynamic”: strict模式: 
首先删除索引:

DELETE my_index
  • 1

然后修改索引mapping设置:

PUT my_index
{
"mappings": {
"doc": {
"dynamic": "strict",
"properties": {
"title": {
"type": "text"
},
"name": {
"type": "keyword"
},
"age": {
"type": "integer"
}
}
}
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

在重新创建文档:

PUT my_index/doc/1
{
"title": "hello world",
"desc": "this is book"
}
  • 1
  • 2
  • 3
  • 4
  • 5

elasticsearch篇之mapping

在strict 模式下插入不存在的字段将会出现报错

copy_to参数说明

作用是将该字段的值复制到目标字段,实现类似_all的作用。不会出现在_source中,只能用来搜索。

PUT my_index4
{
"mappings": {
"doc": {
"properties": {
"first_name": {
"type": "text"
, "copy_to": "full_name"
},
"last_name": {
"type": "text"
, "copy_to": "full_name"
},
"full_name" : {
"type": "text"
}
}
}
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

可以看到这个index中,full_name的内容就是从 first_name 和 last_name 中复制过来的。

然后创建一个新的文档,文档只需要写first_name 和 last_name即可:

PUT my_index4/doc/1
{
"first_name": "john",
"last_name": "smith"
}
  • 1
  • 2
  • 3
  • 4
  • 5

最后查询一下文档的内容:

GET my_index4/_search
{
"query": {
"match": {
"full_name": {
"query": "john smith",
"operator": "and"
}
}
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

这个查询语句意思是:查询包含关键字john smith的文档,必须同时包含两个关键字才返回。

elasticsearch篇之mapping

index参数

index参数作用是控制当前字段是否被索引,默认为true,false表示不记录,即不可被搜索。

PUT my_index5
{
"mappings": {
"doc": {
"properties": {
"cookie": {
"type": "text",
"index": false
},
"content": {
"type": "text",
"index": true
}
}
}
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

这个index有两个字段,其中cookie设定为不可被搜索

写入文档:

PUT my_index5/doc/1
{
"cookie": "name=mike",
"content": "hello world"
}
  • 1
  • 2
  • 3
  • 4
  • 5

尝试分别查询一下两个字段,看看区别:

GET my_index5/_search
{
"query": {
"match": {
"cookie": "mike"
}
}
} GET my_index5/_search
{
"query": {
"match": {
"content": "hello"
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

elasticsearch篇之mapping

elasticsearch篇之mapping

当在es中存储了一些不想要被检索的字段如身份证、手机等,这是对于这些字段就可以使用index设置为false,这样有一定的安全性还可以节省空间

index_options参数

index_options的作用是用于控制倒排索引记录的内容,有如下四种配置:

  • docs:只记录doc id
  • freqs:记录doc id 和term frequencies
  • positions:记录doc id、 term frequencies和term position
  • offsets:记录doc id、 term frequencies、term position、character offsets

text类型的默认配置为positions,其他默认为docs。记录的内容越多,占据的空间越大。

elasticsearch篇之mapping

null_value参数

这个参数的作用是当字段遇到null值的时候的处理策略,默认为null,即空值,此时es会忽略该值。可以通过这个参数设置某个字段的默认值。

elasticsearch篇之mapping

数据类型


核心数据类型

  • 字符串型:text、keyword(不会分词)
  • 数值型:long、integer、short、byte、double、float、half_float等
  • 日期类型:date
  • 布尔类型:boolean
  • 二进制类型:binary
  • 范围类型:integer_range、float_range、long_range、double_range、date_range

复杂数据类型

  • 数组类型:array
  • 对象类型:object
  • 嵌套类型:nested object
  • 地理位置数据类型:geo_point、geo_shape
  • 专用类型:ip(记录ip地址)、completion(实现自动补全)、token_count(记录分词数)、murmur3(记录字符串hash值)

多字段特性

多字段特性(multi-fields),表示允许对同一字段采用不同的配置,比如分词。

常见例子是对人名实现拼音搜索,只需要在人名中新增一个字段pinyin即可。但是这种方式不是十分优雅,multi-fields可以在不改变整体结构的前提下,增加一个子字段: 
elasticsearch篇之mapping

Dynamic mapping


自动识别规则

在前面说过,在写入文档的时候如果index不存在的话es会自动创建这个索引。但是es是如何确定index字段的类型的呢?

首先es可以自动识别文档字段的类型,这样可以降低用户的使用成本。 
elasticsearch篇之mapping

es是依靠json文档的字段类型来实现自动识别字段类型的: 
elasticsearch篇之mapping

elasticsearch篇之mapping

日期自动识别

日期的自动识别可以自行配置日期的格式,默认情况下是:

["strict_date_opeional_time", "yyyy/MM/dd HH:mm:ss Z||yyyy/MM/dd Z"]
  • 1

strict_date_opeional_time 是ISO 标准的日期格式,完整的格式如下:

YYYY-MM-DDhh:mm:ssTZD(eg:1997-07-16y19:20:30+01:00)
  • 1

dynamic_date_formats:可以自定义日期类型 
date_detection:可以关闭日期自动识别机制(默认开启)

首先创建一个日期自动识别的索引:

PUT test_index
{
"mappings": {
"doc": {
"dynamic_date_formats": ["MM/dd/yyyy"]
}
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

然后创建一个文档:

PUT test_index/doc/1
{
"create_time": "09/21/2016"
}
  • 1
  • 2
  • 3
  • 4

查看:

GET test_index/_mapping
  • 1

elasticsearch篇之mapping

关闭日期自动识别可以如下: 
elasticsearch篇之mapping

数字自动识别

字符串为数字的时候,默认不会自动识别为整型,因为字符串中出现数字是完全合理的。

numeric_detection 可以开启字符串中数字的自动识别。 
elasticsearch篇之mapping

Dynamic Templates


Dynamic Templates 意为 动态模板,它的作用是允许根据es自动识别的数据类型、字段名等来动态设定字段类型。

可以实现的效果如下:

  • 所有字符串类型都设置为keyword类型,即默认不分词
  • 所有以message开头的字段都设置为text类型,即分词
  • 所有以long_开头的字段都设置为long类型
  • 所有自动匹配为double类型的都设定为float类型,以节省空间

API

elasticsearch篇之mapping

匹配规则参数

  • match_mapping_type:匹配es自动识别的字段类型,如boolean、long等
  • match、unmatch:匹配字段名
  • path_match、path_unmatch:匹配路径

举例

字段类型匹配

首先PUT一个文档,然后查看mapping:

PUT test_index/doc/1
{
"name": "Tom"
} GET test_index/_mapping
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

elasticsearch篇之mapping

可以看到在默认情况下,字符串被识别成为text类型,并且有一个子字段keyword。

现在设置动态模板,要求匹配到string类型的字段设置为keyword:

PUT test_index
{
"mappings": {
"doc": {
"dynamic_templates": [
{
"strings_as_keywords": {
"match_mapping_type": "string",
"mapping": {
"type": "keyword"
}
}
}
]
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

重新创建文档并查看mapping: 
elasticsearch篇之mapping

name字段的类型变成了 keyword类型

字段匹配

现在想将以message开头的字段且为string的匹配称为text类型,其余为keyword:

PUT test_index
{
"mappings": {
"doc": {
"dynamic_templates": [
{
"message_as_text": {
"match_mapping_type": "string",
"match": "message",
"mapping": {
"type": "text"
}
}
},
{
"strings_as_keywords": {
"match_mapping_type": "string",
"mapping": {
"type": "keyword"
}
}
}
]
}
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

Dynamic Templates 的匹配顺序是从上到下执行的,匹配到一个后后面的规则就会跳过

然后创建一个文档并查看mapping:

PUT test_index/doc/1
{
"name": "john",
"message": "good boy"
} GET test_index/_mapping
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

elasticsearch篇之mapping

可以看到message被设置为了text类型,name还是keyword

double设定为float

elasticsearch篇之mapping

这样可以节省空间

自定义mapping的建议


一般步骤

自定义mapping 的步骤:

  1. 写一条文档到es的临时索引中,获取es自动生成的mapping
  2. 修改第一步得到的mapping,自定义相关配置
  3. 使用第2步的mapping创建市级的索引

实际举例

假设我得到了需要存入es的文档,首先将文档写入临时的index中:

PUT test_index/doc/1
{
"referre": "-",
"response_code": "200",
"remote_ip": "172.0.0.1",
"method": "POST",
"username": "-",
"http_version": "1.1",
"body_sent": {
"bytes": "0"
},
"url": "/helloworld"
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

然后查看es自动生成的mapping:

GET test_index/_mapping
  • 1

现在希望将bytes设置为整型,url设置为text类型,其他都使用keyword(将上一步的输出复制过来就好):

PUT product_index
{
"mappings": {
"doc": {
"properties": {
"body_sent": {
"properties": {
"bytes": {
"type": "long"
}
}
},
"http_version": {
"type": "keyword"
},
"method": {
"type": "keyword"
},
"referre": {
"type": "keyword"
},
"remote_ip": {
"type": "keyword"
},
"response_code": {
"type": "keyword"
},
"url": {
"type": "text"
},
"username": {
"type": "keyword"
}
}
}
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

这样直接将测试index的mapping复制过来进行修改,不会遗漏字段,修改完成设置一个index的名称就行了。

然后就可以向实际的索引中写入文档了:

PUT product_index/doc/1
{
"referre": "-",
"response_code": "200",
"remote_ip": "172.0.0.1",
"method": "POST",
"username": "-",
"http_version": "1.1",
"body_sent": {
"bytes": "0"
},
"url": "/helloworld"
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

然后查看一下实际索引的mapping:

GET product_index/_mapping
  • 1

elasticsearch篇之mapping

使用动态模板优化

上边的设置方法很直接,但是当字段比较多的时候显得复杂,可以使用动态模板进行匹配:

DELETE product_index

PUT product_index
{
"mappings": {
"doc": {
"dynamic_templates": [
{
"strings": {
"match_mapping_type": "string",
"mapping": {
"type": "keyword"
}
}
}
],
"properties": {
"body_sent": {
"properties": {
"bytes": {
"type": "long"
}
}
},
"url": {
"type": "text"
},
"username": {
"type": "keyword"
}
}
}
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

这里使用动态模板匹配所有字符串都设置为keyword类型,需要单独设置类型的在下面另行指出。

索引模板

什么是索引模板

索引模板,index template,主要用于在新建索引时自动应用预先设置的配置,简化索引创建的步骤。

模板中可以设定索引的配置以及mapping,可以有多个模板,根据order设置,order大的覆盖小的范围。

API

elasticsearch篇之mapping

模板加载顺序根据 order 从小到大加载,后面的大order的模板的配置将会覆盖小 order配置。

获取与删除的API 如下: 
elasticsearch篇之mapping

举例

这里设置了两个索引模板:

PUT _template/test_template
{
"index_patterns": ["te*", "bar*"],
"order": 0,
"settings": {
"number_of_shards": 1
},
"mappings": {
"doc": {
"_source": {
"enabled": false
},
"properties": {
"name": {
"type": "keyword"
}
}
}
}
} PUT _template/test_template2
{
"index_patterns": ["test*"],
"order": 1,
"settings": {
"number_of_shards": 1
},
"mappings": {
"doc": {
"_source": {
"enabled": true
}
}
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

然后先创建一个foo_index,并获取一下它的mapping:

PUT foo_index
GET foo_index/_mapping
  • 1
  • 2

elasticsearch篇之mapping

因为这个index没有被任何一个模板匹配到,所以它的mapping是空的

再创建一个bar_index,并获取一下它的mapping:

PUT bar_index
GET bar_index/_mapping
  • 1
  • 2

elasticsearch篇之mapping

这个索引匹配到了test_template

再创建一个test_index,并获取一下它的index配置:

PUT test_index
GET test_index/
  • 1
  • 2

elasticsearch篇之mapping

这个索引匹配到了test_template2模板,这使得索引的”_source”: {“enabled”: true}