题目地址:HDU 2256
思路:
(sqrt(2)+sqrt(3))^2*n=(5+2*sqrt(6))^n;
这时要注意到(5+2*sqrt(6))^n总能够表示成an+bn*sqrt(6);
an+bn*(sqrt(6))=(5+2*sqrt(6))*(a(n-1)+b(n-1)*sqrt(6))
=(5*a(n-1)+12*b(n-1))+(2*a(n-1)+5*b(n-1))*sqrt(6);
显然,an=5*a(n-1)+12*b(n-1);bn=2*a(n-1)+5*b(n-1);
此时能够非常easy的构造出一个矩阵来高速求an和bn:
5,12
2,5
那么下一步应该怎么办呢?对于我等菜渣来说最好的办法当然是。。打表。。找规律。。
然后规律就是ans=2*an-1;
那么怎么证明呢?证明例如以下:
(5+2*sqrt(6))^n=an+bn*sqrt(6); (5-2*sqrt(6))^n=an-bn*sqrt(6);
(5+2*sqrt(6))^n+(5-2*sqrt(6))^n=2*an;
然后,因为
(5-2*sqrt(6))^n=(0.101....)^n<1;
再因为
(5+2*sqrt(6))^n=2*an-(5-2*sqrt(6))^n
可得
2*an-1<(5+2*sqrt(6))^n<2*an;
所以对(5+2*sqrt(6))^n向下取整的结果一定是2*an-1;
证明完成。
所以说仅仅要用矩阵高速幂求出an就可以。
代码例如以下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm> using namespace std;
const int mod=1024;
struct matrix
{
int ma[3][3];
}init, res;
matrix Mult(matrix x, matrix y)
{
matrix tmp;
int i, j, k;
for(i=0;i<2;i++)
{
for(j=0;j<2;j++)
{
tmp.ma[i][j]=0;
for(k=0;k<2;k++)
{
tmp.ma[i][j]=(tmp.ma[i][j]+x.ma[i][k]*y.ma[k][j])%mod;
}
}
}
return tmp;
}
matrix Pow(matrix x, int k)
{
int i, j;
matrix tmp;
for(i=0;i<2;i++) for(j=0;j<2;j++) tmp.ma[i][j]=(i==j);
while(k)
{
if(k&1) tmp=Mult(tmp,x);
x=Mult(x,x);
k>>=1;
}
return tmp;
}
int main()
{
int t, k;
scanf("%d",&t);
while(t--)
{
scanf("%d",&k);
init.ma[0][0]=5;
init.ma[0][1]=12;
init.ma[1][0]=2;
init.ma[1][1]=5;
res=Pow(init,k-1);
int ans=(2*(res.ma[0][0]*5+res.ma[0][1]*2)-1)%mod;
printf("%d\n",ans);
}
return 0;
}