/*
描述:正则问题 考虑一种简单的正则表达式:
只由 x ( ) | 组成的正则表达式。
小明想求出这个正则表达式能接受的最长字符串的长度。 例如 ((xx|xxx)x|(x|xx))xx 能接受的最长字符串是: xxxxxx,长度是6。 输入
----
一个由x()|组成的正则表达式。输入长度不超过100,保证合法。 输出
----
这个正则表达式能接受的最长字符串的长度。 例如,
输入:
((xx|xxx)x|(x|xx))xx 程序应该输出:
6
*/ #include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std; const int N=;
char str[N]="((xx|xxx)x|(x|xx))xx";
int i=;
int result=; int f()
{
int max=;
int temp=;
while(i<strlen(str))
{
if(str[i]=='(')
{
i++;
temp+=f();//还不能确定temp+f()是不是最大,故而不能写 max+=f();
}
else if(str[i]==')')
{
i++;
break;//不能在这里直接写 return max;因为在返回之前一定还要比较max和temp的大小,从而返回两者中更大者;而且还要考虑循环的大条件
}
else if(str[i]=='|')
{
i++;
if(temp>max) max=temp;//总结这个|字符"之前的"最长x字符串的长度
temp=;
}
else//字符为x的情况
{
temp++;
i++;
}
}
if(temp>max) max=temp;
return max;
} int main()
{
//while(scanf("%s",str)!=0&&str!=NULL)
{
result=f();
cout<<result<<endl;
}
return ;
}
很难的一题,思考了很久,主要还是对于深度优先算法理解不够。这道题是误打误撞做出来的,并没有完全理解。不过看过某大佬画的一张图,感觉有助于理解:
aaarticlea/jpeg;base64,iVBORw0KGgoAAAANSUhEUgAAAwAAAAJmCAIAAABkOXAqAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADFDSURBVHhe7d3LrezG1QZQBeLhH8UNwSNHoQA8UBwaGnAemgiORLAy8MDwwDBgwD/P6Y/nFqubzW6SzUfXWtijerFI9tm1z0NXP/wPAKAxCiAAoDkKIACgOQogAKA5CiAAoDkKIACgOQogAKA5CiAAoDkKIACgOQogAKA5CiAAoDkKIACgOQogAKA5CiAAoDkKIACgOQog+PDfv/zpH3/4v6/4519+Twdt+M+fv7/9r/jXr+kF3o8CCP73v7//9Z/Dk08B1Iy//Wv46q/iT//+e4YC70QBBL//+4/VmacAasavP1Wv/laogeANKYBoXfXLr0sogFrRF0DVG69/I/bnv6UDeBcKINp29cuvSyiAWvHrT2PvelgD/fSfNANvQgFEy8pffv30r+LAUwAx/NGg34LBu1EA0a7yhPvnX/5W/iWQAui8vl7r0pc4+PMgBRC8GwUQrSp/+fXHv/53+KfQCqDzWqsAGv4EyK/A4N0ogGhTWe5cvrlXAL2JlQqg4X8b6I+g4e0ogGhS8duN/phUAL2JdQqg4X8e719EhPejAKJBxb999/HLrwsF0JtYoQCq/ttAP/6Bd6QAojnFf95c/mWrAuhNLC6Aqn8b2l//wHtSANGYG7/8ulAAndPwd1X344HXWlU//uMveFsKIJpy85dfFwqgc1qzABp8BlQ/8N4UQDRk+B82PxKOwMNbrQBS/UBbFEA0RAHUgll/A6T6geYogGiIAqgFMwqg4f/2y0uHJiiA4MLfAL2JZwug6n/87p/8gUYogOBCAfQmniqAVD/QLAUQXCiA3sQTBdATf0DtXwOCd6MAggsF0JtQAAGPUADBhQKoPQogaJgCCABojgKInV19q32syC4BeC8KIJaqKgbxFXlAAByPAogbqoNcbBB59ABsQgHUouroFaeIvDwA1qAAek/V2SnePvLiAXiMAujcqlPwdJHbOLBqw6eL3AYAQwqg06gOtoNENseI6nEdJLI5gIYpgA6qOrE2jmyCDVWvYOPIJgCaoQA6hOo0enXkqpxK9RJfHbkqwJtSAO2gOmleEbkSzag+AK+IXAngLSiAtlAdJOtGrgFXqo/KupFrAJyTAuglqqNilcjSsFj10VolsjTASSiAVlOdBwsji8Imqo/fwsiiAAemAFqkyvuzI8vBYVQf0dmR5QAORgH0tCq/z4usBSdRfYDnRdYCOAAF0EOqPD4jshC8herjPSOyEMBOFED3VCn7qcgS0IDqw/9UZAmAbSmAbqgS9OOR+dCw6ovi8ch8gE0ogL6r0vEjkZnAiOpL5pHITIBXUgBJ0LCR6utoMjIN4AWaLoCqbHs/MgdYrPriuh+ZA7CqFgugKr3ej8wBXqD6crsfmQOwhrYKoCqf3olMADZRfQHeiUwAWKaVAqjKoWOR0efw28/ffohvP/+WRlbxBs/2rLdQfUmORUYDzPX+BVCVN29Ghp6MAuh1FED7q75Ib0aGAjzvzQqgIun/8K3KlTcj8z4M5p7hxGigACrfyQ8//pLWDazybPf9RJ3t4zHyrqsv2Jux3+cEOLG3KoB++TEpsEv5VYqsIhMK5dyTVBNnO+HmKc+27Y62FZ7t3p+oE3487r7r6ku4ip0+J8CJvVEB1B84VWasIoMrJyx/WimA9imBFj/b/T9Rp/x4TL7r6su5isxUAgEPeJsCKAdOlRDLyMAbisPqTJmzlQJojxJo4bM9wifqpB+Ph9519aVdRqYqgYApb1IAdVmzyoNlZNCIMuOeqpA46Qk3y9Y/UFn0bI/xiTrtx+Phd119mZcxORfgPQqgX6r0V0aGjDrpj386LRVAW7+mJc/2IJ+o8348nniA1Rd7GX4IBNz3DgVQlfi+It33zTityikf6mnlDwA+dP0zpkx7/oTbZucvudnBrMHtHuTZfin389itHeUWjv+uR1Rf+F+x9HPymrsDDuL0BVCV8r4i3VPKFPd4+qoS4zBHDzv7vhlTphTp99EpG+18xpRp46fiCy4359lelNd76SdqynE/HtPG3/WY6sv/K8Z3s9/dAcfwngVQ+qaVKeypb9+qxPh9bpm6h0lxxpT75h3S2+x89ZvtlGt+X/DTQZ5t584m7zvILczYxuo778x8jFUe6GI49yB3BxzCuQugKtl18VwWKnPYsxlsmBj72YPWeskZU+4pdv/U5rfZ+YwpU8rJ9am48uXmPtuNP1H3HPvjMaWc/EQFdCsnpOPiGHcHHMGJC6AqzV0ifQ+anWU/lGdd52P+VFKcMeWOuSfcRjtf92Y/lCtezV73csVqT00sL/mxhacc4xbmbGPdnX8oV3x2dpUTukjHh0PcHXAEb1UAPZuIliTZD8PE+O3nn4usOLLejCmjirWW3Pnrdr7mzX4qj52PY2joAM+23MKcOzzALXyYsY01d/7p/ru+q0oLXaTj4gh3BxzA+xRAXSp6Mk8uybExTIzf3UmKM6aMKFZaNHlg3Z2vd7Ofpl7Y7s92l0/UiJm3cDFjG+vt/NOSR/nLj1VySHtv/7sDDuCsBVCV4LroktH2BdDtxDiRFGdMualYZ+H0L+vvfK2b/TT9wnZ+tjt9om6aeQu9GdtYa+efVi2AukhX7H13wAG8SQF0SUdHKYAmFpsx5aZinbVOuPV3vtbNfppXAG34bHf6RN008xZ6M7ax1s4/LSuAuklVikhX7H13wAG8VQH0bJ4vU9q87+VuJsUP44lxxpQRxUrP736bna93s5+mDsXdn225gc0+USNm3sLFjG2st/NPryyA9r874AAUQDHnuBomxW/fBinydmKcMWVUsdaSO3/dzte82Q/lejfueM3LFWs982wndjjpALfwYcY21tz5hyVP8jK3ShHp6xzg7oAjeKsC6OlUtOS7zDopdkm6XK5zveKMKXcUqz13RGyz83Vv9kM5/2ryMZ7t3S1OOcYtzNnGujv/sORBXuZWKSJ9x7g74Aje6o+gn85Eg8z23NxhUszkqrE6d2ZMuauYOnPahxftfMaUKeXseuralyumPrXLwSUvu3jUQW5hxjbW3nmnnP3k1M+5VXLo4ntfYae7Aw7hrAVQp0pwsxJRmceemTua/8YT44wpE4qJsyZ9eNHOZ0yZVE6t5q1/uWLiM3u8u8u7DnILM7ax/s6HU5+Z9+FzbpUcyq7v9ro74BjepwDqYkYeKtPYw3Pv5r7qp+PpnDFlUrHmjCkfXrTzV9zscNHLt+HxissVaz68w4tyN/Nubr9bmLGNV+x8uOjgXU/r5lZpoYu+J0t+2u3ugIN4qwKoi6fTUJniHptb5b2rBF0lzY8BM6ak555i1pF2/vKbHd7tQZ7td6M7HdXUxyM99zz/BL/7mFvlhC66jsPcHXAUJy6AOlWa62JGFirT3KkyWJF/nz0mTmfJmTjHomd7jE/UaT8eS971bz9XCaGLdAEMnbsA6lTJrosZSXPbw3Utpz3hnrd5SbHs2R7iE3XWj8eSd12lgi7SAXDlDQugS6T7Mef8IVAzBdAOr2fpsz3AJ+qcH4+5D6768v+KdANcOX0B1KlS3lek+yFnLIEaKYCK29zu1Sx/trt/os748Zj5rqsv/K9IN8At71AAdarEV0ZGTCpz7zkOjDOecM/a662s8Wx3/kSd7uMx83lVX+9fkW6AEW9SAHWq9FdGRryb051wJ/IGz/b9Px7Vl3kZGQEw7n0KoIsqD5aREe9DAfQ6CqBDq760y8gIgCnvVgB1qoRYRQYBJ1R9OVeRQQAPeMMCqFOlxevIOOAkqi/h68g4gMe8ZwF0UeXH68g44MCqL9vryDiAZ7xzAXRR5cqbkaHAYVRfpDcjQwGe9/4F0EWVN8cio4GdVF+SY5HRAHO1UgBdVDl0LDIa2FD1ZTgWGQ2wTFsF0EWVT+9EJgAvU33R3YlMAFhDiwXQRZVbJyPTgMWqL67JyDSA9bRbAH2pUu1kZBrwpOpLaTIyDeAFFEDfVcn3kchMYET1JfNIZCbAKymAbqjS8YORydC86kvjwchkgE0ogO6pEvTjkfnQjOpL4PHIfIBtKYAeUqXsZyOrwBupPuTPRlYB2IkC6GlVHp8RWQhOpfoYz4gsBHAACqBFqvw+L7IWHEz1QZ0dWQ7gSBRAq6mS/sLIorCJ6uO3MLIowIEpgF6iOg9WiSwNi1UfrVUiSwOchAJoC9VRsWLkAjCi+sCsGLkAwDkpgHZQHSSviFyJZlQfgFdErgTwFhRA+6uOmVdHrsoJVa/y1ZGrArwjBdARVefQxpFNsLnqRWwc2QRAGxRA51CdVQeJbI67qod2kMjmAFqlADq36lQ7V+QeDq/a9rki9wDAkALoPVWnoHj7yIsH4DEKoOZUB6c4UeQVArCYAogbqnNXbBB59ABsQgHEItUpLqrIYwLgYBRA7KaqFY4Z3T5/GLpsfkwG9dIKwMFI0DAhtUwvrSMyqJdWAA5GgoYJqWV6aR2RQb20AnAwEjRMSC3TS+uIDOqlFYCDkaBhQmqZXlpHZFAvrQAcjAQNE1LL9NI6IoN6aQXgYCRomJBappfWERnUSysAByNBw4TUMr20jsigXloBOBgJGiaklumldUQG9dIKwMFI0DAhtUwvrSMyqJdWAA5GgoYJqWV6aR2RQb20AnAwEjRMSC3TS+uIDOqlFYCDkaBhQmqZXlpHZFAvrQAcjAQNE1LL9NI6IoN6aQXgYCRomJBappfWERnUSysAByNBw4TUMr20jsigXloBOBgJGiaklumldUQG9dIKwMFI0DAhtUwvrSMyqJdWAA5GgoYJqWV6aR2RQb20AnAwEjRMSC3TS+uIDOqlFYCDkaBhQmqZXlpHZFAvrQAcjAQNE1LL9NI6IoN6aQXgYCRomJBappfWERnUSysAByNBw4TUMr20jsigXloBOBgJGiaklumldUQG9dIKwMFI0DAhtUwvrSMyqJdWAA5GgoYJqWV6aR2RQb20AnAwEjRMSC3TS+uIDOqlFYCDkaBhQmqZXlpHZFAvrQAcjAQNE1LL9NI6IoN6aQXgYCRomJBappfWERnUSysAByNBw4TUMr20jsigXloBOBgJGiaklumldUQG9dIKwMFI0DAhtUwvrSMyqJdWAA5GgoaBVC7jMm5EBo3IIAD2JiPDd6lT7srQERl0V4YCsB+5GCLlyZSMHpFBUzIagJ1IxBCpTaZk9IgMmpLRAOxEIoZIbXJXht6VoXdlKAA7kYjhu5QnvbQuluV6aQVgP3IxfJcKpZCOBbJQIR0A7EcuhoEUKb20LpCFemkFYFfSMQykTumldYEs1EsrALuSjmEgdUohHbNkiUI6ANiVdAy1lCq9tM6SJXppBWBvMjLUUq0U0vG8zO+lFYC9ychwQwqWXlqflMmFdACwNxkZbkjB0kvrkzK5l1YADkBShhtSsxTS8bBMK6QDgAOQlOG2lC29tD4s03ppBeAY5GW4LZVLIR2PyZxeWgE4BnkZRqV46aX1AZlQSAcAxyAvw6gUL720PiATemkF4DCkZhiV+qWQjrsytJAOAA5DaoZ7UsL00npXhvbSCsCRyM5wT6qYXlrvytBeWgE4EtkZ7kkVU0jHiAwqpAOAI5GdYUIKmV5aR2RQL60AHIwEDRNSyxTScSXdhXQAcDASNExLOdNL65V099IKwPHI0TAtFU0vrVfS3UsrAMcjR8O0VDSFdBTSUUgHAMcjR8NDUtT00lpIRy+tABySNA0PSV1TSMenNBXSAcAhSdPwqJQ2vbR+SlMvrQAclUwNj0p100vrpzT10grAUcnU8KhUN4X77QAclkwNT0iB07vTCMCRSdbwhNQ4d2UoAAcmWcNzUuaMyCAAjk2+huek0hmRQfH7v//4f//4w2f88a//TSMA+1MAwXNS6YzIoFAAARyUAqhR//lzfzCX8ee/pZsPo+VLip0r6f7uTQqgm5+Wf/2aXoAzUgA16G//ujrMyvjnX37PwPb89y9/qp5GotECaOKj8o8//Onff89QgHNRADVo8lRrtAYarX66uCpfUvIMpe+7kxdAv/70/QmMhhoIOCUFUIM+CqD69xf1UffTf9LRkIUFUDoG3qQAqgri+jdifnMKnJACiKiO/wb/wkMBVPv1p7GfBQ5roBbLZeDsFED0hj8EarYA6m+8qF26uFW+pPD5lKba2f8GaNSwWPRbMOB8FED0BgXQPkfa17F6gD9Cmi6AOnern87bFkBH+LQALKEAIga/1NjptD5dATSlkZ8A+RUYcD4KIDrDw36/b+gVQCcxfDj+CBo4IQVQo4bfwZex53fzCqBzaP7PxYA3oABq1O0CaO9DWgF0An//6z+/HksXfvwDnJMCqFHjPwHqYrcfAimADq/6VzT99Q9wVgogPlz9z542OdiGv0m5H5uXRAqga1X14z/+Ak5MAURv+19tKIDOZPhAVD/AySmA+G7r/xJeAXQaqh/g3SiA+G74h0E7/HmHvwE6JNUP8IYUQHy3+7+FqAA6oOHfh6l+gDehAGrN7//+88hJfID/vFkBdDTVX8f7J3+At6EAak1/JFf1zdWf4+xy1CmADkX1A7wxBVBrhuf6SOxVf+xcAD38R9kPlwJnLoCe+BN1/xoQcD4KoNZMF0A7fqOvADoQBRDw1hRATRo521r/HYcCqKQAAt6aAghuuzrmPyJ9jzpzAQTw1hRADfk6xV8RucZbqG7tOjIOgNNSAL2D6ng+bGS7x1bteSwyGoBzUgCdSXUGv03k9g6g2thkZNq7q+56SWRFgL0pgI6rOjmaijyCbVV7eCQy8+Sqm9oxsiGA11MAHUh1GIivyAN6peqKX5HuT1XXJdJ3228/f/shvv38Wxr3V93CYSPbBXgBBdDOqoz/usj1bljnkK4u97rI9VZVXeIS6RuqxlwifTccpQCqNnzeyP0ALKYAWl1x5o0celVOXx5Zd6btDulq28sj604q38kPP/6S1qjWvET6RlSDu0hHbZVnO/2Juqna4ZtFbvLa3XcN8EUBtLJffkzqvT6rqgw+L7LWmrYrgMZU9zgjstAd5bk4PBarpbpIx7hqfBfpqK3wbO98oq5Vu1ol1v14VIuvEln6y/i7BviiAFrVrcOqStZPxWWFF9u/ALpWPYfHI/NvuXksVtO7SMeUalYX6RhY/GwfK3+qncyILHTDph+PalfPRlZRAgEPUACtqDisfvixSs2PRJbZ2hELoEr1oB6JzBy4cSxWs7r4bH7IAxMXPtvBJ+rmOV7t4cHI5Ifs+fGotv14KIGASQqg1Xxl3CoX349M3tOeJ9wM1QO8H5nz5eoHKhPj73pg7qJnW57h1ezq0pORaXMc6ONR3dRkZNvn+FwDW1MAreXjaK3y753IpEM4WQH0pXqkdyITPkz8lC6jHlPN7SId3y15trd//FNd8U5kwlIH/XhUN3snPrfuh0BATQG0jirn3owM/VIecB/qHF3+AOBD1z9jyrTnT7htdv7MlOpR34zJWWmNB3Z49d4vIwvFpGerh/L2+71Ul7sZmfLhoVuY8vwtbPPx6FW3PxZHKt6AQ1AAraBKtdeRcVeqtD/M0cPOvm/GlClzDultdv7slOqxX8fHvOJ2q94ZO6xW+GwrzXm2F+X1uuO+utB1XM/qPHILU4778ahUD+Q6Htw80AgF0FJVki0jI+6p0v73b2yH3/KWKX/GlPvmHdLb7HzmzVYvooqvNav2GZe7WqEy79l2yp3c+4P6DP9u5hMbN+8WtnvX16pHVEZGACiAFqrS61ek+xHDtN9n90FrnfJnTLln7iG9zc5nTOlVL6WMblbVkjnPX+72OjH32RbzqvW/IiOvLXhitxz74zGuelxfkW6geQqg+arEeoniG9cHDb+//Zw/lfJnTLlj7gm30c6X3mz1gsYio5+/3Mg6F3OfbX/JavGvyLDblj6xobm3MGcb6+78Q/XcLpE+oG0KoJmqlHqJWSm6Tvvffv65yPkj682YMmr2CbfVzhffbPWabkaGdp683Og6H2Y+28u0auVLZMR9i59YYeYtfJixjTV3/umX279ATC/QMAXQHFUyvcQlSX980/q8Ydr/7k7KnzFlxIITbqudr3Kz1fuqIoM+PXW5O+vMfra//Lig+vm0yhP7NPMWLmZsY72df/r8CVL1GC+RAUCrFEBzVJm0i0uO7swrgG6n/YmUP2PKTYtOuK12vs7NVm+tjIyIJy736DrP7PZmAZS+R63zxGbfQm/GNtba+af+V2jVw+wiA4BWKYCeVqXRLso/U1izAJpYbMaUm15wwq2/83VutnpxZWREPHG5R9d55tlWa3aRjies88Rm30JvxjbW2vmn4ouzeqRdZAzQJAXQ065zaJmw532nejPlfxhP+zOmjChWen732+x8vZsdrYHS/empy91ZZ/azvbvmQ9Z7YjNv4WLGNtbb+afhdyfLHyzwNhRAT7vOoWXKXv5N8rdvgwPgdtqfMWVUsdazu99m52ve7AMF0JOXG13nw8xne3fNB6z5xGbewocZ21hz5x/K9brtL32wwBtRAD3tRg5d9DuwKuV3Z0y5XOd6xRlT7ihWe+6E22bn697sZAH09OVG1rmY+Wzvrjlp3Sc28xZmbWPdnX8o53eTlz1Y4K0ogJ5W5dAuhnn7uRw9TPmZXDVW586MKXcVU2dO+/Cinc+Yckf14sq4DJhxuZvr9Iqpzzzbas3PXTxq3Sc2+xZmbGPtnXfK2R9TqwebUUCTFEBzXKXROs8+ajS7j6f9GVMmFBNnTfrwop3PmHJX9eKqmHG5eoVaMfHRPX6olu0iHZPWfmIzb2HGNtbf+XDqt5+rR9pFhgFNUgDNUaXRLoaZ9sEMfTezVz/7T+eMKZOKNWdM+fCina98s9Uru44Zl6tW+GwrzXi2Ua3cRTruWfmJfZpxC/u/64ty0ephdpFBQKsUQDNVyfQSybWPJegqq+cn/t9VR8LHgBlT0nNPMetIO1/xZqvXdInubq9aCo9drlrhMrTw9LP9Uq18ifSNaOrjkZ57vs+qHuMlMgpolQJopiqZfsUl4T6Un4/i6RPuXKoX9BXdzVYtXWTOY6q5XaTju0XPtlr8Eunbzmk/Hv3Gqwd4iYwBGqYAmq9KqWWc6qh42wKoeilldPd6KVKr9s95j3pg7rJn+9uNEq2L9G7krB+Py0+Vqkd3iYwA2qYAWqRKrFVk0NG9YQFUvYgqPu60/xld1XVpfNADc5c+2+4Ur67yFRnxcuf8eIz8P1AvkTFA2xRAK6jSaxUZdFxvVQBVD7+K3GbxK8pqQBfpmFLN6iIdA8uf7ccPMqoLlZFRL3S+j0f1iMrICAAF0FqqPHszMvRw3qEAqh71zcg9Xt1kNayLdIyrxneRjtoaz/ZzjepyVWTkS5zp41E9lioyCOCTAmhNVcIdi4w+ihMXQNWDHYuMHlENvkT6RlSDu0hHbc1nW13xZmTomk7w8agews3IUICeAmh9Vea9H5mzp5MVQNUDvB+ZM6WadYn0DVVjLpG+G9Z/ttWl70QmLHXQj0d1s3ciEwCGFECvUmXhRyIzuVI9qEciMx9WTb9E+npV7yXSt61qD5ORaSdX3dRkZBrALQqgl6uS8uOR+U2qHsXjkfnPq9Z5PDJ/D9VOHoxMPolq8w9GJgOMUwBtpErQ8yJrvZ3qNudF1lqgWvCRyMy9Vbt6NrLKAVQbezayCsADFEA7qLL2wsiiJ1FtfmFk0VVVlxiLjD6YapOrRJZeSbX4WpHVAR6mANpTlcRfGrnkK1VXfF3kei9TXe46Mu7Aqg2/ZeRWAWZRAB1Ild/FV+QBbavawyXSdyrVLZw6cksAiymAjqtK/U1FHgEvUD3qg0c2DbA2BdCZVGfD20Ruj51Ur2PHyIYAXk8B9A6qU+TIkR1zHtUbXBhZFGBvCqAmVIfQiyIXA4DDUwABAM1RAAEAzVEAAQDNUQABAM1RADXthxfLZQDgYBxR7UqR8mK5GAAcifOpXalQXiwXA4AjcT61KxXKi+ViAHAkzqd2pUJ5sVwMAI7E+dSuVCi9tC6W5Xpp5Tzy5l4mlwHYlWTUrhxHvbQuluV6aeUk8tpeLBcD2I9M1K6cRb20LpblemnlJPLaXiwXA9iPTNSunEW9tC6W5Xpp5STy2l4sFwPYj0zUrpxFvbQuluV6aeUk8tpeLBcD2I9M1K6cRb20LpblemnlJPLaemldLMv10gqwH5moXTmLemldLMv10spJ5LX10rpYluulFWA/MlG7chb10rpYluullZPIa+uldbEs10srwH5konblLOqldbEs10srJ5HX1kvrYlmul1aA/chE7cpZ1EvrYlmul1ZOIq+tl9bFslwvrQD7kYnalbOol9bFslwvrZxEXlsvrYtluV5aAfYjE7UrZ1EvrYtluV5aOYm8tl5aF8tyvbQC7EcmalfOol5aF8tyvbRyEnltvbQuluV6aQXYj0zUrpxFvbQuluV6aeUk8tp6aV0sy/XSCrAfmahdOYt6aV0sy/XSyknktfXSuliW66UVYD8yUbtyFvXSuliW66WVk8hr66V1sSzXSyvAfmSiduUs6qV1sSzXSysnkdfWS+tiWa6XVoD9yETtylnUS+tiWa6XVk4ir62X1sWyXC+tAPuRidqVs6iX1sWyXC+tnEReWy+ti2W5XloB9iMTtStnUS+ti2W5Xlo5iby2XloXy3K9tALsRyZqV86iXloXy3K9tHISeW29tC6W5XppBdiPTNSunEW9tC6W5Xpp5STy2nppXSzL9dIKsB+ZqF05i3ppXSzL9dLKSeS19dK6WJbrpRVgPzJRu3IW9dK6WJbrpZWTyGvrpXWxLNdLK8B+ZKJ25SzqpXWxLNdLKyeR19ZL62JZrpdWgP3IRO3KWdRL62JZrpdWTiKvrZfWxbJcL60A+5GJ2pWzqJfWxbJcL62cRF5bL62LZbleWgH2IxO1K2dRL62LZbleWjmJvLZeWhfLcr20AuxHJmpXzqJeWhfLcr20chJ5bb20LpblemkF2I9M1K6cRb20LpblemnlJPLaemldLMv10gqwH5moXTmLemldLMv10spJ5LX10rpYluulFWA/MlG7chb10rpYluullZPIa+uldbEs10srwH5konblLOqldbEs10srJ5HX1kvrYlmul1aA/chE7cpZ1EvrYlmul1ZOIq+tl9bFslwvrQD7kYneUA6ZJ2XyYlnuGZnJAeSV9NK6WJbrpRVgPzLRu8kJ87zMXyzLPS/z2VVeRi+ti2W5XloB9iMTvZUcL7NkicWy3CxZgv3kTfTSuliW66UVYD8y0VvJ8TJLllgsy82SJdhP3kQvrYtluV5aAfYjE72VHC/Py/yVZNHnZT77yZvopXWxLNdLK8B+ZKJ3kxNmKH1Hkp0V0sFr5Ck/KZMXy3LPyEyA15Bl3lAOkEI6DiPbKqSD18hTfl7mL5blnpf5AGuTX95TTo9COg4gGyqkg9fIU54lSyyW5WbJEgCrklzeU46OofTtKlsZSh+vkac8S5ZYLMvNkiUAViW5vK2cHoV07CpbKaSDl8mDfl7mrySLPi/zAVYlubyzHCCFdOwkmyikgxfL4x5K35FkZ4V0AKxNfnlzOUYK6dhcLl9IB5vIQy+k4zCyrUI6AF5AinlzOUmG0rehXHgofWwlz72QjgPIhgrpAHgNWeb95TwppGNDuXAhHWwoj34ofbvKVobSB/AaskwTcqQU0rGJXLKQDjaXF1BIx66ylUI6AF5GomlFDpZCOl4sFyukg53kNRTSsZNsopAOgFeSa1qRs2UofS+Tywylj/3kTRTSsblcvpAOgBeTbhqSE6aQjpfJZQrpYFd5GUPp21AuPJQ+gBeTbtqSQ6aQjhfIBQrp4ADySgrp2FAuXEgHwOvJOM3JUVNIx6qydCEdHEZeTCEdm8glC+kA2ISk05ycNkPpW0kWHUofR5J3U0jHi+VihXQAbEXeaVHOnEI6VpJFC+ngYPJ6htL3MrnMUPoAtiLvNCrHTiEdi2W5Qjo4pLykQjpeJpcppANgQ1JPu3L4FNKxQBYqpIMDy6sqpOMFcoFCOgC2Jfu0K+fPUPpmyRJD6ePY8rYK6VhVli6kA2BzElDTcgoV0jFLliikg8PLCxtK30qy6FD6ADYnAbUuB1EhHU/K5EI6OIm8tkI6VpJFC+kA2IMcxAonU6YV0sGp5OUV0rFYliukA2An0hA3DqdO+h6QCUPp42zy/grpWCALFdIBsB+ZiA85lwrpeEAmFNLBCeUVDqVvliwxlD6A/chERI6mQjruytBCOjitvMhCOmbJEoV0AOxKMuK7HFCFdIzIoEI6OLm8zkI6npTJhXQA7E0+4rucUUPpu5LuofRxfnmjhXQ8LNMK6QA4ACmJgZxUhXRcSXchHbyFvNSh9D0gE4bSB3AAUhK1HFaFdBTSUUgHbySvtpCOB2RCIR0AxyArcUOOrEI6PqWpkA7eTl5wIR13ZWghHQCHITFxQ06tocku3lLecSEdIzKokA6AI5GbuC1nV+F+O+8qr3kofVfSPZQ+gCORmxiV4+uuDOWt5WUX0nEl3YV0AByM9MQ9OcRGZBANyCsvpKOQjkI6AI5HhuKenGMjMog25K0X0vEpTYV0ABySJMWEnGZX0k0z8uKHJrsAjkmSYloOtEI6aExef+F+O8BhyVM8JMfapzTRpHwI7spQgAOTqniUs42LyydhTAYBHJtsBTwnlc6IDAI4NtkKeFqKnSvpBjg8CQuYIyVPIR0AZyBnATOl8PmUJoCTkLaA+VQ/wEnJXABAcxRAAEBzFEAAQHMUQABAcxRAAEBzFEAAQHMUQABAcxRAAEBzFEAAQHMUQABAcxRAAEBzFEAAQHMUQLzcP/7wf5ORoQCwCQUQ66uKmxmRhQDgNRRArKOqYNaKrA4Aq1IAsUhVr7wucj0AWIMCiJmqAmWbyLUBYBkFEE+ripL7kTlTqln3I3MAYC4FEM+papGbkaFzVavdjAwFgFkUQDyqKkGuI+PWU61/HRnHG6lecRUZBLCYAoiHVOdQGRnxStUVy8gITq56rZORaQBzKYCYVp09X5HurVRX/4p0c07V23wqsgTA8xRATKiOnK9I97aqPXxFujmV6iXOjiwH8AwFEKOqY+Yr0r2faj9fkW7OoHp3CyOLAjxMAcSo6oy5RPr2Vu3qEunj2Kq3dh0Zd6Uadh0ZB/AABVBrfvv52w/x7eff0nhDdbRcIn3HUO3tEunj5R79IFWq91VGRjygmlhGRgBMUQC15qFzqzpULpG+I6l2eIn08VpzCqDqTX1Fup9ULfIV6Qa4SwHUmpkFUDqOp9rnJdLHCz1dAFXv6CvSPUu11FekG2CcAqg10+dWdZZ0kY6jqnbbRTp4oRUKoHQsVi3bRToAximAWjNxblUHSRfpOLZqz12kg1d5rgCq3k4X6VhJtXgX6QAYoQBqzXsWQJ2Tbvu0FhVAaV1VdYku0gFwiwKoNc8VQGk9g/Pu/JyeKICqV9NFOlZVXaKLdADcogBqzb1zqzo/ukjHGVQ77yIdvMT8AiitL1BdqIt0AFxRAG3llx9zWsSPv6QjivPkU9c/Y8q0JwqgtG6z8zVu9vb+2fyDVKpeSheZ9cg2nt95da2MA7iiANpOlcyHp8aws++bMWXKvXNr7PDYZuczplTG9s/yZ3tlZgGUKZ8e2cazO68ul4EAVxRAW6qS+fdvZ4ffyJZJfsaU++YUQFvtfIWbHb+Fxm36QSpVb+TVn4rqcp8DAW5QAG1rmMz7ND9orU+TGVPuGT23Jk6ObXY+Y8rQxF20bPGzHXqoALrxOmZs48kpNy4KcEUBtLHhd62f385OHUEzptwxtwDaaOdLb3bqLlq20QepdOt1vPxTceuiADUF0OaGyfzbzz8XmXzkJJkxZdTouTV9bGyz82U3O30XLdvkg1S6/Tpe/Km4fVGAIQXQDobJ/Ls7R9CMKSNGz61Hjo1tdr7kZh+5i5Zt8EEqjb2Ol34qxi4KUFIA7eJWMp84gmZMuWn03Hrs2Nhm5/Nv9rG7aNnLP0il8dfxwk/F+EUBvlMA7eJWKv/8y4ZxM6bcNHpuPXZsbLPz+Tf72F207OUfpNL463jhp2L8ogDfKYB2cDORfxjP/zOmjBg9t6pjo4t0FLbZ+ZKbnbyFxm3wQSqNvY6XfirGLgpQUgBtbpjIv30bpPXb+X/GlFH3zq2Jk2ObnS+42Yn9s9UH6cvtN/LiT8XtiwIMKYA2ViXy7uQY/Pe8t/L/jCl33Du37p4c2+x80c3e3T/bfZBKVy/ltZ+K6nJdpANgSAG0qWEiT9quGqvTZMaUu4qpV9Oqk6OLdGy18xlTvlQ77yIdfFrybG8ppt6dVr2UGdt4akp1uUsjwDUF0IZG0/x4/p8xZUIx8dak2+fHNjufMaVQ7byLdNBZ9mxvKSbenVS9lC4yq/PINp7ceXWtz5EANyiANnP3pKl+op/OGVMmFWvemnLr/Nhm50tv9tbOudjhg1SqXk1mPbSN53ZeXaiLjAS4ogDaSJWr83P876pE/zFgxpT03DNxblXnRxfb7HzhzVZ77iIdzPrspeeeiQ9SqXo1XXzMWvtTUV2ii4wCuEUB1Jrpc6s6RbpIx1FVu+0iHbzQogIoHauqLtFFOgBuUQC1Zk4B1EX6jqfa5yXSxws9UQB1qhfURTpWUi3eRToARiiAWvPQuVWdJZdI38FUm+wiHbzWcwVQp3pNXaRjsWrZLtIBME4B1JpHz63qRLlE+o6h2tsl0sfLrVAAdZG+BaoFL5E+gHEKoNY8cW5Vh8ol0re3aleXSB9beLoA6lTv6yvS/aRqka9IN8BdCqDWLC2Aukj3fqr9fEW62cKcAqhTvbIyMuIB1cQyMgJgigKoNev85qKLdG+r2kMZGcFGZhZAnerFXUfGXamGXUfGATxAAcS06pj5inRvpbr6V6SbU6le4vLIugCPUQDxkOqwKSMjXqm6YhkZwQlVr3J2ZDmAZyiAeFR16lxHxq2nWv86Mo4zq97pU5ElAJ6nAOI51Ql0MzJ0rmq1scho3kL1cicj0wDmUgDxtOoouh+ZM6WadT8yh3dUvesqMghgMQUQM1Un0zaRawPAMgogFqkKlNdFrgcAa1AAsY6qXlkrsjoArEoBxMqqCmZeZC0AeA0FEK9VVTZjkdEAsAkFEADQHAUQANAcBRCv9Z8/17/t+og//y3dMOLmJ+dfv6YXYCEFEK/zt39dHWBl/PMvv2cgfDfxsfnHH/70779nKMBsCiBeZ/IkUwNx5defqg/JrVADAUspgHidjwKo/p1Ffbz99J90wKf+E1IVx/VvxPwWFVhGAcTW/vuXP5Unmb/qYODXn8Z+LjisgZTOwCIKIDY3/CGQAogHDUtnvwUDFlEAsblBAeQY42E+OcB6FEBsbfCLjD/+9b9phgnDnwD5FRiwiAKILf3+7z9+HWBd+Caexw0/PP4IGlhGAcRrVX/yXITv4HmGPx0DVqUA4rVuF0B+88VT/v7Xf5afHz/+ARZTAPFa4z8B6sIPgXhE9S9q+tgAK1AAsamr/8GTw4z7qurH340B61AAsTm/zuBR/moeeBUFEDvwX8LzANUP8EIKIHbgH3RhiuoHeC0FEDvwEyDuG/6tmOoHWJ8CiBf5/d9/Hqls/A0Qd1V/Ke+f/AFeQQHEi/S/wqjqm+E/Z9eF442S6gfYhgKIF6n+huN2/PMvv2c4dK7q4/Hwp2PAIgogXmS6APLNPTUFELAVBRCvNHKeKX24TQEEbEUBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA0RwEEADRHAQQANEcBBAA05n//+3+J2Q8Uu7FefAAAAABJRU5ErkJgggA=" alt="" />
tz@Teaching Building NO.4 HZAU
2018/3/17