HDU 4893 Wow! Such Sequence! (树状数组)

时间:2024-10-23 10:33:02

题意:给有三种操作,一种是 1 k d,把第 k 个数加d,第二种是2 l r,查询区间 l, r的和,第三种是 3 l r,把区间 l,r 的所有数都变成离它最近的Fib数,

并且是最小的那个。

析:觉得应该是线段树的,但是。。。不会啊。。。就想胡搞一下。

所以用了树状数组,也就是和的,然后用一个set来维护每个不是Fibnoccia的数,然后再进行计算。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e5 + 5;
const LL mod = 10000000000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const int hr[]= {-2, -2, -1, -1, 1, 1, 2, 2};
const int hc[]= {-1, 1, -2, 2, -2, 2, -1, 1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL sum1[maxn<<1], a[maxn];
LL F[150];
int cnt;
set<int> sets;
set<int> :: iterator it;
int lowbit(int x){ return x & (-x); } void add1(int x, LL d){
while(x <= n){
sum1[x] += d;
x += lowbit(x);
}
} LL qurey1(int x){
LL ans = 0;
while(x > 0){
ans += sum1[x];
x -= lowbit(x);
}
return ans;
} void solve(int l, int r){
it = sets.lower_bound(l);
while(it != sets.end() && *it <= r){
LL *tmp = lower_bound(F+1, F+cnt, a[*it]);
if(a[*it] == *tmp){ sets.erase(it++); continue; }
LL *tmpp = tmp - 1;
if(*tmp - a[*it] >= a[*it] - *tmpp){
add1(*it, *tmpp - a[*it]);
a[*it] = *tmpp;
sets.erase(it++);
}
else{
add1(*it, *tmp - a[*it]);
a[*it] = *tmp;
sets.erase(it++);
}
}
}
int main(){
F[0] = F[1] = 1;
cnt = 2;
while(1){
F[cnt] = F[cnt-1] + F[cnt-2];
if(F[cnt] > (1LL<<61)) break;
++cnt;
}
++cnt;
while(scanf("%d %d", &n, &m) == 2){
sets.clear();
for(int i = 0; i <= n; ++i){
sum1[i] = a[i] = 0;
sets.insert(i);
}
int l, r, x;
for(int i = 0; i < m; ++i){
scanf("%d", &x);
if(1 == x){
scanf("%d %d", &l, &r);
a[l] += r;
sets.insert(l);
add1(l, (LL)r);
}
else if(2 == x){
scanf("%d %d", &l, &r);
printf("%I64d\n", qurey1(r) - qurey1(l-1));
}
else if(3 == x){
scanf("%d %d", &l, &r);
solve(l, r);
}
}
}
return 0;
}