I need to implement 256 bit AES encryption, but all the examples I have found online use a "KeyGenerator" to generate a 256 bit key, but I would like to use my own passkey. How can I create my own key? I have tried padding it out to 256 bits, but then I get an error saying that the key is too long. I do have the unlimited jurisdiction patch installed, so thats not the problem :)
我需要实现256位AES加密,但是我在网上找到的所有例子都使用一个“KeyGenerator”来生成一个256位的密钥,但是我想使用我自己的密码。我如何创建自己的密钥?我试过将它填充到256位,但是我得到一个错误,说这个键太长了。我确实有无限权限安装补丁,所以这不是问题:)
Ie. The KeyGenerator looks like this ...
Ie。KeyGenerator看起来像这样…
// Get the KeyGenerator
KeyGenerator kgen = KeyGenerator.getInstance("AES");
kgen.init(128); // 192 and 256 bits may not be available
// Generate the secret key specs.
SecretKey skey = kgen.generateKey();
byte[] raw = skey.getEncoded();
代码来自这里
EDIT
编辑
I was actually padding the password out to 256 bytes, not bits, which is too long. The following is some code I am using now that I have some more experience with this.
我实际上是将密码填充到256字节,而不是位,这太长了。下面是我现在使用的一些代码,我有更多的经验。
byte[] key = null; // TODO
byte[] input = null; // TODO
byte[] output = null;
SecretKeySpec keySpec = null;
keySpec = new SecretKeySpec(key, "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS7Padding");
cipher.init(Cipher.ENCRYPT_MODE, keySpec);
output = cipher.doFinal(input)
The "TODO" bits you need to do yourself :-)
你需要做的“TODO”部分:-)
9 个解决方案
#1
415
Share the password
(a char[]
) and salt
(a byte[]
—8 bytes selected by a SecureRandom
makes a good salt—which doesn't need to be kept secret) with the recipient out-of-band. Then to derive a good key from this information:
共享密码(char[])和盐(由SecureRandom选择的一个字节[]-8字节),这是一种很好的盐,不需要保密)与接收方的out- band。然后从这些信息中获得一个好键:
/* Derive the key, given password and salt. */
SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256");
KeySpec spec = new PBEKeySpec(password, salt, 65536, 256);
SecretKey tmp = factory.generateSecret(spec);
SecretKey secret = new SecretKeySpec(tmp.getEncoded(), "AES");
The magic numbers (which could be defined as constants somewhere) 65536 and 256 are the key derivation iteration count and the key size, respectively.
神奇的数字(可以被定义为常量)65536和256是关键的派生迭代计数和密钥大小。
The key derivation function is iterated to require significant computational effort, and that prevents attackers from quickly trying many different passwords. The iteration count can be changed depending on the computing resources available.
关键的派生函数是迭代的,需要大量的计算工作,这可以防止攻击者快速尝试许多不同的密码。可以根据可用的计算资源更改迭代计数。
The key size can be reduced to 128 bits, which is still considered "strong" encryption, but it doesn't give much of a safety margin if attacks are discovered that weaken AES.
密钥大小可以减少到128位,这仍然被认为是“强大的”加密,但是如果攻击被发现削弱了AES,它就不会提供很大的安全余量。
Used with a proper block-chaining mode, the same derived key can be used to encrypt many messages. In CBC, a random initialization vector (IV) is generated for each message, yielding different cipher text even if the plain text is identical. CBC may not be the most secure mode available to you (see AEAD below); there are many other modes with different security properties, but they all use a similar random input. In any case, the outputs of each encryption operation are the cipher text and the initialization vector:
使用适当的块链接模式,可以使用相同的派生密钥对许多消息进行加密。在CBC中,为每个消息生成一个随机初始化向量(IV),即使纯文本是相同的,也会产生不同的密码文本。CBC可能不是最安全的模式(见下面的AEAD);有许多其他的模式具有不同的安全属性,但它们都使用类似的随机输入。在任何情况下,每个加密操作的输出都是密文和初始化向量:
/* Encrypt the message. */
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, secret);
AlgorithmParameters params = cipher.getParameters();
byte[] iv = params.getParameterSpec(IvParameterSpec.class).getIV();
byte[] ciphertext = cipher.doFinal("Hello, World!".getBytes("UTF-8"));
Store the ciphertext
and the iv
. On decryption, the SecretKey
is regenerated in exactly the same way, using using the password with the same salt and iteration parameters. Initialize the cipher with this key and the initialization vector stored with the message:
存储密文和iv.在解密时,秘钥会以完全相同的方式重新生成,使用相同的盐和迭代参数使用密码。用此键初始化密码,并将初始化向量存储在消息中:
/* Decrypt the message, given derived key and initialization vector. */
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.DECRYPT_MODE, secret, new IvParameterSpec(iv));
String plaintext = new String(cipher.doFinal(ciphertext), "UTF-8");
System.out.println(plaintext);
Java 7 included API support for AEAD cipher modes, and the "SunJCE" provider included with OpenJDK and Oracle distributions implements these beginning with Java 8. One of these modes is strongly recommended in place of CBC; it will protect the integrity of the data as well as their privacy.
Java 7包含了对AEAD密码模式的API支持,而OpenJDK和Oracle发行版中包含的“SunJCE”提供程序从Java 8开始实现这些功能。其中一种模式被强烈推荐用于CBC;它将保护数据的完整性和隐私。
A java.security.InvalidKeyException
with the message "Illegal key size or default parameters" means that the cryptography strength is limited; the unlimited strength jurisdiction policy files are not in the correct location. In a JDK, they should be placed under ${jdk}/jre/lib/security
java.security。使用“非法密钥大小或默认参数”的消息无效,这意味着加密强度是有限的;无限制的权限权限策略文件不在正确的位置。在JDK中,它们应该置于${JDK}/jre/lib/安全性之下。
Based on the problem description, it sounds like the policy files are not correctly installed. Systems can easily have multiple Java runtimes; double-check to make sure that the correct location is being used.
根据问题描述,似乎策略文件没有正确安装。系统可以很容易地拥有多个Java运行时;再次检查以确保使用正确的位置。
#2
54
Consider using the Spring Security Crypto Module
The Spring Security Crypto module provides support for symmetric encryption, key generation, and password encoding. The code is distributed as part of the core module but has no dependencies on any other Spring Security (or Spring) code.
Spring Security Crypto模块提供了对对称加密、密钥生成和密码编码的支持。代码是作为核心模块的一部分分发的,但对其他Spring安全性(或Spring)代码没有依赖性。
It's provides a simple abstraction for encryption and seems to match what's required here,
它为加密提供了一个简单的抽象,并且似乎符合这里的要求,
The "standard" encryption method is 256-bit AES using PKCS #5's PBKDF2 (Password-Based Key Derivation Function #2). This method requires Java 6. The password used to generate the SecretKey should be kept in a secure place and not be shared. The salt is used to prevent dictionary attacks against the key in the event your encrypted data is compromised. A 16-byte random initialization vector is also applied so each encrypted message is unique.
“标准”加密方法是使用PKCS #5的PBKDF2(基于密码的关键派生函数#2)256位AES。此方法需要Java 6。用于生成秘密密钥的密码应该保存在安全的地方,而不是共享。在您的加密数据被破坏时,使用salt来防止字典对密钥的攻击。还应用了一个16字节的随机初始化向量,因此每个加密的消息都是唯一的。
A look at the internals reveals a structure similar to erickson's answer.
看一下内部结构,就会发现一个类似erickson答案的结构。
As noted in the question, this also requires the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy (else you'll encounter InvalidKeyException: Illegal Key Size
). It's downloadable for Java 6, Java 7 and Java 8.
正如在问题中所指出的,这也需要Java加密扩展(JCE)无限强度权限管理策略(否则您将遇到InvalidKeyException:非法密钥大小)。它可以下载到Java 6、Java 7和Java 8。
Example usage
import org.springframework.security.crypto.encrypt.Encryptors;
import org.springframework.security.crypto.encrypt.TextEncryptor;
import org.springframework.security.crypto.keygen.KeyGenerators;
public class CryptoExample {
public static void main(String[] args) {
final String password = "I AM SHERLOCKED";
final String salt = KeyGenerators.string().generateKey();
TextEncryptor encryptor = Encryptors.text(password, salt);
System.out.println("Salt: \"" + salt + "\"");
String textToEncrypt = "*royal secrets*";
System.out.println("Original text: \"" + textToEncrypt + "\"");
String encryptedText = encryptor.encrypt(textToEncrypt);
System.out.println("Encrypted text: \"" + encryptedText + "\"");
// Could reuse encryptor but wanted to show reconstructing TextEncryptor
TextEncryptor decryptor = Encryptors.text(password, salt);
String decryptedText = decryptor.decrypt(encryptedText);
System.out.println("Decrypted text: \"" + decryptedText + "\"");
if(textToEncrypt.equals(decryptedText)) {
System.out.println("Success: decrypted text matches");
} else {
System.out.println("Failed: decrypted text does not match");
}
}
}
And sample output,
示例输出,
Salt: "feacbc02a3a697b0" Original text: "*royal secrets*" Encrypted text: "7c73c5a83fa580b5d6f8208768adc931ef3123291ac8bc335a1277a39d256d9a" Decrypted text: "*royal secrets*" Success: decrypted text matches
#3
30
After reading through erickson's suggestions, and gleaning what I could from a couple other postings and this example here, I've attempted to update Doug's code with the recommended changes. Feel free to edit to make it better.
在阅读了erickson的建议后,我从其他的帖子和这里的例子中得到了我可以得到的信息,我尝试用推荐的修改来更新Doug的代码。请随意编辑,以使其更好。
- Initialization Vector is no longer fixed
- 初始化向量不再是固定的。
- encryption key is derived using code from erickson
- 加密密钥是使用erickson的代码派生出来的。
- 8 byte salt is generated in setupEncrypt() using SecureRandom()
- 使用SecureRandom()在setupEncrypt()中生成8字节的盐
- decryption key is generated from the encryption salt and password
- 解密密钥由加密盐和密码生成。
- decryption cipher is generated from decryption key and initialization vector
- 解密密码由解密密钥和初始化向量生成。
- removed hex twiddling in lieu of org.apache.commons codec Hex routines
- 删除了hex twiddling代替org.apache.commons codec hex例程。
Some notes: This uses a 128 bit encryption key - java apparently won't do 256 bit encryption out-of-the-box. Implementing 256 requires installing some extra files into the java install directory.
一些注释:这使用了128位加密密钥- java显然不会在开箱即用256位加密。实现256需要在java安装目录中安装一些额外的文件。
Also, I'm not a crypto person. Take heed.
而且,我不是一个秘密的人。要谨慎。
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.security.AlgorithmParameters;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.InvalidParameterSpecException;
import java.security.spec.KeySpec;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.CipherInputStream;
import javax.crypto.CipherOutputStream;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.SecretKeySpec;
import org.apache.commons.codec.DecoderException;
import org.apache.commons.codec.binary.Hex;
public class Crypto
{
String mPassword = null;
public final static int SALT_LEN = 8;
byte [] mInitVec = null;
byte [] mSalt = null;
Cipher mEcipher = null;
Cipher mDecipher = null;
private final int KEYLEN_BITS = 128; // see notes below where this is used.
private final int ITERATIONS = 65536;
private final int MAX_FILE_BUF = 1024;
/**
* create an object with just the passphrase from the user. Don't do anything else yet
* @param password
*/
public Crypto (String password)
{
mPassword = password;
}
/**
* return the generated salt for this object
* @return
*/
public byte [] getSalt ()
{
return (mSalt);
}
/**
* return the initialization vector created from setupEncryption
* @return
*/
public byte [] getInitVec ()
{
return (mInitVec);
}
/**
* debug/print messages
* @param msg
*/
private void Db (String msg)
{
System.out.println ("** Crypt ** " + msg);
}
/**
* this must be called after creating the initial Crypto object. It creates a salt of SALT_LEN bytes
* and generates the salt bytes using secureRandom(). The encryption secret key is created
* along with the initialization vectory. The member variable mEcipher is created to be used
* by the class later on when either creating a CipherOutputStream, or encrypting a buffer
* to be written to disk.
*
* @throws NoSuchAlgorithmException
* @throws InvalidKeySpecException
* @throws NoSuchPaddingException
* @throws InvalidParameterSpecException
* @throws IllegalBlockSizeException
* @throws BadPaddingException
* @throws UnsupportedEncodingException
* @throws InvalidKeyException
*/
public void setupEncrypt () throws NoSuchAlgorithmException,
InvalidKeySpecException,
NoSuchPaddingException,
InvalidParameterSpecException,
IllegalBlockSizeException,
BadPaddingException,
UnsupportedEncodingException,
InvalidKeyException
{
SecretKeyFactory factory = null;
SecretKey tmp = null;
// crate secureRandom salt and store as member var for later use
mSalt = new byte [SALT_LEN];
SecureRandom rnd = new SecureRandom ();
rnd.nextBytes (mSalt);
Db ("generated salt :" + Hex.encodeHexString (mSalt));
factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
/* Derive the key, given password and salt.
*
* in order to do 256 bit crypto, you have to muck with the files for Java's "unlimted security"
* The end user must also install them (not compiled in) so beware.
* see here: http://www.javamex.com/tutorials/cryptography/unrestricted_policy_files.shtml
*/
KeySpec spec = new PBEKeySpec (mPassword.toCharArray (), mSalt, ITERATIONS, KEYLEN_BITS);
tmp = factory.generateSecret (spec);
SecretKey secret = new SecretKeySpec (tmp.getEncoded(), "AES");
/* Create the Encryption cipher object and store as a member variable
*/
mEcipher = Cipher.getInstance ("AES/CBC/PKCS5Padding");
mEcipher.init (Cipher.ENCRYPT_MODE, secret);
AlgorithmParameters params = mEcipher.getParameters ();
// get the initialization vectory and store as member var
mInitVec = params.getParameterSpec (IvParameterSpec.class).getIV();
Db ("mInitVec is :" + Hex.encodeHexString (mInitVec));
}
/**
* If a file is being decrypted, we need to know the pasword, the salt and the initialization vector (iv).
* We have the password from initializing the class. pass the iv and salt here which is
* obtained when encrypting the file initially.
*
* @param initvec
* @param salt
* @throws NoSuchAlgorithmException
* @throws InvalidKeySpecException
* @throws NoSuchPaddingException
* @throws InvalidKeyException
* @throws InvalidAlgorithmParameterException
* @throws DecoderException
*/
public void setupDecrypt (String initvec, String salt) throws NoSuchAlgorithmException,
InvalidKeySpecException,
NoSuchPaddingException,
InvalidKeyException,
InvalidAlgorithmParameterException,
DecoderException
{
SecretKeyFactory factory = null;
SecretKey tmp = null;
SecretKey secret = null;
// since we pass it as a string of input, convert to a actual byte buffer here
mSalt = Hex.decodeHex (salt.toCharArray ());
Db ("got salt " + Hex.encodeHexString (mSalt));
// get initialization vector from passed string
mInitVec = Hex.decodeHex (initvec.toCharArray ());
Db ("got initvector :" + Hex.encodeHexString (mInitVec));
/* Derive the key, given password and salt. */
// in order to do 256 bit crypto, you have to muck with the files for Java's "unlimted security"
// The end user must also install them (not compiled in) so beware.
// see here:
// http://www.javamex.com/tutorials/cryptography/unrestricted_policy_files.shtml
factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
KeySpec spec = new PBEKeySpec(mPassword.toCharArray (), mSalt, ITERATIONS, KEYLEN_BITS);
tmp = factory.generateSecret(spec);
secret = new SecretKeySpec(tmp.getEncoded(), "AES");
/* Decrypt the message, given derived key and initialization vector. */
mDecipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
mDecipher.init(Cipher.DECRYPT_MODE, secret, new IvParameterSpec(mInitVec));
}
/**
* This is where we write out the actual encrypted data to disk using the Cipher created in setupEncrypt().
* Pass two file objects representing the actual input (cleartext) and output file to be encrypted.
*
* there may be a way to write a cleartext header to the encrypted file containing the salt, but I ran
* into uncertain problems with that.
*
* @param input - the cleartext file to be encrypted
* @param output - the encrypted data file
* @throws IOException
* @throws IllegalBlockSizeException
* @throws BadPaddingException
*/
public void WriteEncryptedFile (File input, File output) throws
IOException,
IllegalBlockSizeException,
BadPaddingException
{
FileInputStream fin;
FileOutputStream fout;
long totalread = 0;
int nread = 0;
byte [] inbuf = new byte [MAX_FILE_BUF];
fout = new FileOutputStream (output);
fin = new FileInputStream (input);
while ((nread = fin.read (inbuf)) > 0 )
{
Db ("read " + nread + " bytes");
totalread += nread;
// create a buffer to write with the exact number of bytes read. Otherwise a short read fills inbuf with 0x0
// and results in full blocks of MAX_FILE_BUF being written.
byte [] trimbuf = new byte [nread];
for (int i = 0; i < nread; i++)
trimbuf[i] = inbuf[i];
// encrypt the buffer using the cipher obtained previosly
byte [] tmp = mEcipher.update (trimbuf);
// I don't think this should happen, but just in case..
if (tmp != null)
fout.write (tmp);
}
// finalize the encryption since we've done it in blocks of MAX_FILE_BUF
byte [] finalbuf = mEcipher.doFinal ();
if (finalbuf != null)
fout.write (finalbuf);
fout.flush();
fin.close();
fout.close();
fout.close ();
Db ("wrote " + totalread + " encrypted bytes");
}
/**
* Read from the encrypted file (input) and turn the cipher back into cleartext. Write the cleartext buffer back out
* to disk as (output) File.
*
* I left CipherInputStream in here as a test to see if I could mix it with the update() and final() methods of encrypting
* and still have a correctly decrypted file in the end. Seems to work so left it in.
*
* @param input - File object representing encrypted data on disk
* @param output - File object of cleartext data to write out after decrypting
* @throws IllegalBlockSizeException
* @throws BadPaddingException
* @throws IOException
*/
public void ReadEncryptedFile (File input, File output) throws
IllegalBlockSizeException,
BadPaddingException,
IOException
{
FileInputStream fin;
FileOutputStream fout;
CipherInputStream cin;
long totalread = 0;
int nread = 0;
byte [] inbuf = new byte [MAX_FILE_BUF];
fout = new FileOutputStream (output);
fin = new FileInputStream (input);
// creating a decoding stream from the FileInputStream above using the cipher created from setupDecrypt()
cin = new CipherInputStream (fin, mDecipher);
while ((nread = cin.read (inbuf)) > 0 )
{
Db ("read " + nread + " bytes");
totalread += nread;
// create a buffer to write with the exact number of bytes read. Otherwise a short read fills inbuf with 0x0
byte [] trimbuf = new byte [nread];
for (int i = 0; i < nread; i++)
trimbuf[i] = inbuf[i];
// write out the size-adjusted buffer
fout.write (trimbuf);
}
fout.flush();
cin.close();
fin.close ();
fout.close();
Db ("wrote " + totalread + " encrypted bytes");
}
/**
* adding main() for usage demonstration. With member vars, some of the locals would not be needed
*/
public static void main(String [] args)
{
// create the input.txt file in the current directory before continuing
File input = new File ("input.txt");
File eoutput = new File ("encrypted.aes");
File doutput = new File ("decrypted.txt");
String iv = null;
String salt = null;
Crypto en = new Crypto ("mypassword");
/*
* setup encryption cipher using password. print out iv and salt
*/
try
{
en.setupEncrypt ();
iv = Hex.encodeHexString (en.getInitVec ()).toUpperCase ();
salt = Hex.encodeHexString (en.getSalt ()).toUpperCase ();
}
catch (InvalidKeyException e)
{
e.printStackTrace();
}
catch (NoSuchAlgorithmException e)
{
e.printStackTrace();
}
catch (InvalidKeySpecException e)
{
e.printStackTrace();
}
catch (NoSuchPaddingException e)
{
e.printStackTrace();
}
catch (InvalidParameterSpecException e)
{
e.printStackTrace();
}
catch (IllegalBlockSizeException e)
{
e.printStackTrace();
}
catch (BadPaddingException e)
{
e.printStackTrace();
}
catch (UnsupportedEncodingException e)
{
e.printStackTrace();
}
/*
* write out encrypted file
*/
try
{
en.WriteEncryptedFile (input, eoutput);
System.out.printf ("File encrypted to " + eoutput.getName () + "\niv:" + iv + "\nsalt:" + salt + "\n\n");
}
catch (IllegalBlockSizeException e)
{
e.printStackTrace();
}
catch (BadPaddingException e)
{
e.printStackTrace();
}
catch (IOException e)
{
e.printStackTrace();
}
/*
* decrypt file
*/
Crypto dc = new Crypto ("mypassword");
try
{
dc.setupDecrypt (iv, salt);
}
catch (InvalidKeyException e)
{
e.printStackTrace();
}
catch (NoSuchAlgorithmException e)
{
e.printStackTrace();
}
catch (InvalidKeySpecException e)
{
e.printStackTrace();
}
catch (NoSuchPaddingException e)
{
e.printStackTrace();
}
catch (InvalidAlgorithmParameterException e)
{
e.printStackTrace();
}
catch (DecoderException e)
{
e.printStackTrace();
}
/*
* write out decrypted file
*/
try
{
dc.ReadEncryptedFile (eoutput, doutput);
System.out.println ("decryption finished to " + doutput.getName ());
}
catch (IllegalBlockSizeException e)
{
e.printStackTrace();
}
catch (BadPaddingException e)
{
e.printStackTrace();
}
catch (IOException e)
{
e.printStackTrace();
}
}
}
#4
11
I've implemented the erickson's answer in a really simple class:
Java AES 256-bit Encryption/Decryption class
If you get the java.security.InvalidKeyException
you have to install the Java Cryptography Extension (JCE) unlimited strength jurisdiction policy files:
我在一个非常简单的类中实现了erickson的答案:Java AES 256位加密/解密类,如果您获得了Java .security。您必须安装Java Cryptography Extension (JCE)无限强度权限权限策略文件:
- Java 6 link
- Java 6链接
- Java 7 link
- Java 7的链接
Just place the jars in your {JDK HOME}\jre\lib\security
只需将jar放在您的{JDK HOME}\jre\lib\安全性中。
#5
6
Generating your own key from a byte array is easy:
从字节数组中生成自己的密钥很简单:
byte[] raw = ...; // 32 bytes in size for a 256 bit key
Key skey = new javax.crypto.spec.SecretKeySpec(raw, "AES");
But creating a 256-bit key isn't enough. If the key generator cannot generate 256-bit keys for you, then the Cipher
class probably doesn't support AES 256-bit either. You say you have the unlimited jurisdiction patch installed, so the AES-256 cipher should be supported (but then 256-bit keys should be too, so this might be a configuration problem).
但是创建一个256位的密钥是不够的。如果密钥生成器不能为您生成256位密钥,那么Cipher类可能也不支持AES 256位。您说您已经安装了无限权限补丁,因此应该支持AES-256密码(但是256位的密钥也应该被支持,所以这可能是一个配置问题)。
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, skey);
byte[] encrypted = cipher.doFinal(plainText.getBytes());
A workaround for lack of AES-256 support is to take some freely available implementation of AES-256, and use it as a custom provider. This involves creating your own Provider
subclass and using it with Cipher.getInstance(String, Provider)
. But this can be an involved process.
缺少AES-256支持的解决方案是获取一些免费的AES-256实现,并将其作为自定义提供程序使用。这包括创建您自己的Provider子类并使用Cipher来使用它。getInstance(字符串,提供者)。但这可能是一个复杂的过程。
#6
5
What I've done in the past is hash the key via something like SHA256, then extract the bytes from the hash into the key byte[].
我过去所做的是通过像SHA256这样的东西来哈希键,然后从散列中提取字节到关键字节[]。
After you have your byte[] you can simply do:
当你有了你的字节[]你可以简单地做:
SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, key);
byte[] encryptedBytes = cipher.doFinal(clearText.getBytes());
#7
3
Adding to @Wufoo's edits, the following version uses InputStreams rather than files to make working with a variety of files easier. It also stores the IV and Salt in the beginning of the file, making it so only the password needs to be tracked. Since the IV and Salt do not need to be secret, this makes life a little easier.
添加到@Wufoo的编辑器,下面的版本使用InputStreams而不是文件来简化各种文件的工作。它还在文件的开头存储了IV和盐,因此只需要跟踪密码。因为四和盐不需要是秘密,这使得生活更容易。
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.security.AlgorithmParameters;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.InvalidParameterSpecException;
import java.security.spec.KeySpec;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.CipherInputStream;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.SecretKeySpec;
public class AES {
public final static int SALT_LEN = 8;
static final String HEXES = "0123456789ABCDEF";
String mPassword = null;
byte[] mInitVec = null;
byte[] mSalt = new byte[SALT_LEN];
Cipher mEcipher = null;
Cipher mDecipher = null;
private final int KEYLEN_BITS = 128; // see notes below where this is used.
private final int ITERATIONS = 65536;
private final int MAX_FILE_BUF = 1024;
/**
* create an object with just the passphrase from the user. Don't do anything else yet
* @param password
*/
public AES(String password) {
mPassword = password;
}
public static String byteToHex(byte[] raw) {
if (raw == null) {
return null;
}
final StringBuilder hex = new StringBuilder(2 * raw.length);
for (final byte b : raw) {
hex.append(HEXES.charAt((b & 0xF0) >> 4)).append(HEXES.charAt((b & 0x0F)));
}
return hex.toString();
}
public static byte[] hexToByte(String hexString) {
int len = hexString.length();
byte[] ba = new byte[len / 2];
for (int i = 0; i < len; i += 2) {
ba[i / 2] = (byte) ((Character.digit(hexString.charAt(i), 16) << 4)
+ Character.digit(hexString.charAt(i + 1), 16));
}
return ba;
}
/**
* debug/print messages
* @param msg
*/
private void Db(String msg) {
System.out.println("** Crypt ** " + msg);
}
/**
* This is where we write out the actual encrypted data to disk using the Cipher created in setupEncrypt().
* Pass two file objects representing the actual input (cleartext) and output file to be encrypted.
*
* there may be a way to write a cleartext header to the encrypted file containing the salt, but I ran
* into uncertain problems with that.
*
* @param input - the cleartext file to be encrypted
* @param output - the encrypted data file
* @throws IOException
* @throws IllegalBlockSizeException
* @throws BadPaddingException
*/
public void WriteEncryptedFile(InputStream inputStream, OutputStream outputStream)
throws IOException, IllegalBlockSizeException, BadPaddingException {
try {
long totalread = 0;
int nread = 0;
byte[] inbuf = new byte[MAX_FILE_BUF];
SecretKeyFactory factory = null;
SecretKey tmp = null;
// crate secureRandom salt and store as member var for later use
mSalt = new byte[SALT_LEN];
SecureRandom rnd = new SecureRandom();
rnd.nextBytes(mSalt);
Db("generated salt :" + byteToHex(mSalt));
factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
/*
* Derive the key, given password and salt.
*
* in order to do 256 bit crypto, you have to muck with the files for Java's "unlimted security"
* The end user must also install them (not compiled in) so beware.
* see here: http://www.javamex.com/tutorials/cryptography/unrestricted_policy_files.shtml
*/
KeySpec spec = new PBEKeySpec(mPassword.toCharArray(), mSalt, ITERATIONS, KEYLEN_BITS);
tmp = factory.generateSecret(spec);
SecretKey secret = new SecretKeySpec(tmp.getEncoded(), "AES");
/*
* Create the Encryption cipher object and store as a member variable
*/
mEcipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
mEcipher.init(Cipher.ENCRYPT_MODE, secret);
AlgorithmParameters params = mEcipher.getParameters();
// get the initialization vectory and store as member var
mInitVec = params.getParameterSpec(IvParameterSpec.class).getIV();
Db("mInitVec is :" + byteToHex(mInitVec));
outputStream.write(mSalt);
outputStream.write(mInitVec);
while ((nread = inputStream.read(inbuf)) > 0) {
Db("read " + nread + " bytes");
totalread += nread;
// create a buffer to write with the exact number of bytes read. Otherwise a short read fills inbuf with 0x0
// and results in full blocks of MAX_FILE_BUF being written.
byte[] trimbuf = new byte[nread];
for (int i = 0; i < nread; i++) {
trimbuf[i] = inbuf[i];
}
// encrypt the buffer using the cipher obtained previosly
byte[] tmpBuf = mEcipher.update(trimbuf);
// I don't think this should happen, but just in case..
if (tmpBuf != null) {
outputStream.write(tmpBuf);
}
}
// finalize the encryption since we've done it in blocks of MAX_FILE_BUF
byte[] finalbuf = mEcipher.doFinal();
if (finalbuf != null) {
outputStream.write(finalbuf);
}
outputStream.flush();
inputStream.close();
outputStream.close();
outputStream.close();
Db("wrote " + totalread + " encrypted bytes");
} catch (InvalidKeyException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
} catch (InvalidParameterSpecException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
} catch (NoSuchAlgorithmException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
} catch (NoSuchPaddingException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
} catch (InvalidKeySpecException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
}
}
/**
* Read from the encrypted file (input) and turn the cipher back into cleartext. Write the cleartext buffer back out
* to disk as (output) File.
*
* I left CipherInputStream in here as a test to see if I could mix it with the update() and final() methods of encrypting
* and still have a correctly decrypted file in the end. Seems to work so left it in.
*
* @param input - File object representing encrypted data on disk
* @param output - File object of cleartext data to write out after decrypting
* @throws IllegalBlockSizeException
* @throws BadPaddingException
* @throws IOException
*/
public void ReadEncryptedFile(InputStream inputStream, OutputStream outputStream)
throws IllegalBlockSizeException, BadPaddingException, IOException {
try {
CipherInputStream cin;
long totalread = 0;
int nread = 0;
byte[] inbuf = new byte[MAX_FILE_BUF];
// Read the Salt
inputStream.read(this.mSalt);
Db("generated salt :" + byteToHex(mSalt));
SecretKeyFactory factory = null;
SecretKey tmp = null;
SecretKey secret = null;
factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
KeySpec spec = new PBEKeySpec(mPassword.toCharArray(), mSalt, ITERATIONS, KEYLEN_BITS);
tmp = factory.generateSecret(spec);
secret = new SecretKeySpec(tmp.getEncoded(), "AES");
/* Decrypt the message, given derived key and initialization vector. */
mDecipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
// Set the appropriate size for mInitVec by Generating a New One
AlgorithmParameters params = mDecipher.getParameters();
mInitVec = params.getParameterSpec(IvParameterSpec.class).getIV();
// Read the old IV from the file to mInitVec now that size is set.
inputStream.read(this.mInitVec);
Db("mInitVec is :" + byteToHex(mInitVec));
mDecipher.init(Cipher.DECRYPT_MODE, secret, new IvParameterSpec(mInitVec));
// creating a decoding stream from the FileInputStream above using the cipher created from setupDecrypt()
cin = new CipherInputStream(inputStream, mDecipher);
while ((nread = cin.read(inbuf)) > 0) {
Db("read " + nread + " bytes");
totalread += nread;
// create a buffer to write with the exact number of bytes read. Otherwise a short read fills inbuf with 0x0
byte[] trimbuf = new byte[nread];
for (int i = 0; i < nread; i++) {
trimbuf[i] = inbuf[i];
}
// write out the size-adjusted buffer
outputStream.write(trimbuf);
}
outputStream.flush();
cin.close();
inputStream.close();
outputStream.close();
Db("wrote " + totalread + " encrypted bytes");
} catch (Exception ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
}
}
/**
* adding main() for usage demonstration. With member vars, some of the locals would not be needed
*/
public static void main(String[] args) {
// create the input.txt file in the current directory before continuing
File input = new File("input.txt");
File eoutput = new File("encrypted.aes");
File doutput = new File("decrypted.txt");
String iv = null;
String salt = null;
AES en = new AES("mypassword");
/*
* write out encrypted file
*/
try {
en.WriteEncryptedFile(new FileInputStream(input), new FileOutputStream(eoutput));
System.out.printf("File encrypted to " + eoutput.getName() + "\niv:" + iv + "\nsalt:" + salt + "\n\n");
} catch (IllegalBlockSizeException | BadPaddingException | IOException e) {
e.printStackTrace();
}
/*
* decrypt file
*/
AES dc = new AES("mypassword");
/*
* write out decrypted file
*/
try {
dc.ReadEncryptedFile(new FileInputStream(eoutput), new FileOutputStream(doutput));
System.out.println("decryption finished to " + doutput.getName());
} catch (IllegalBlockSizeException | BadPaddingException | IOException e) {
e.printStackTrace();
}
}
}
#8
0
Use this class for encryption. It works.
使用该类进行加密。它的工作原理。
public class ObjectCrypter {
public static byte[] encrypt(byte[] ivBytes, byte[] keyBytes, byte[] mes)
throws NoSuchAlgorithmException,
NoSuchPaddingException,
InvalidKeyException,
InvalidAlgorithmParameterException,
IllegalBlockSizeException,
BadPaddingException, IOException {
AlgorithmParameterSpec ivSpec = new IvParameterSpec(ivBytes);
SecretKeySpec newKey = new SecretKeySpec(keyBytes, "AES");
Cipher cipher = null;
cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, newKey, ivSpec);
return cipher.doFinal(mes);
}
public static byte[] decrypt(byte[] ivBytes, byte[] keyBytes, byte[] bytes)
throws NoSuchAlgorithmException,
NoSuchPaddingException,
InvalidKeyException,
InvalidAlgorithmParameterException,
IllegalBlockSizeException,
BadPaddingException, IOException, ClassNotFoundException {
AlgorithmParameterSpec ivSpec = new IvParameterSpec(ivBytes);
SecretKeySpec newKey = new SecretKeySpec(keyBytes, "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.DECRYPT_MODE, newKey, ivSpec);
return cipher.doFinal(bytes);
}
}
}
And these are ivBytes and a random key;
这些是ivBytes和一个随机键;
String key = "e8ffc7e56311679f12b6fc91aa77a5eb";
byte[] ivBytes = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
keyBytes = key.getBytes("UTF-8");
#9
0
Consider using Encryptor4j
考虑使用Encryptor4j
First make sure you have Unlimited Strength Jurisdiction Policy files installed before your proceed so that you can use 256-bit AES keys.
首先确保您在继续进行之前已经安装了无限的权限权限策略文件,以便您可以使用256位AES键。
Then do the following:
然后执行以下操作:
String password = "mysupersecretpassword";
Key key = KeyFactory.AES.keyFromPassword(password.toCharArray());
Encryptor encryptor = new Encryptor(key, "AES/CBC/PKCS7Padding", 16);
You can now use the encryptor to encrypt your message. You can also perform streaming encryption if you'd like. It automatically generates and prepends a secure IV for your convenience.
您现在可以使用encryptor加密您的消息。如果您愿意,也可以执行流加密。它自动生成并预置一个安全的IV,为您的方便。
If it's a file that you wish to compress take a look at this answer Encrypting a large file with AES using JAVA for an even simpler approach.
如果是您希望压缩的文件,请查看此答案,并使用JAVA为更简单的方法加密一个大型文件。
#1
415
Share the password
(a char[]
) and salt
(a byte[]
—8 bytes selected by a SecureRandom
makes a good salt—which doesn't need to be kept secret) with the recipient out-of-band. Then to derive a good key from this information:
共享密码(char[])和盐(由SecureRandom选择的一个字节[]-8字节),这是一种很好的盐,不需要保密)与接收方的out- band。然后从这些信息中获得一个好键:
/* Derive the key, given password and salt. */
SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256");
KeySpec spec = new PBEKeySpec(password, salt, 65536, 256);
SecretKey tmp = factory.generateSecret(spec);
SecretKey secret = new SecretKeySpec(tmp.getEncoded(), "AES");
The magic numbers (which could be defined as constants somewhere) 65536 and 256 are the key derivation iteration count and the key size, respectively.
神奇的数字(可以被定义为常量)65536和256是关键的派生迭代计数和密钥大小。
The key derivation function is iterated to require significant computational effort, and that prevents attackers from quickly trying many different passwords. The iteration count can be changed depending on the computing resources available.
关键的派生函数是迭代的,需要大量的计算工作,这可以防止攻击者快速尝试许多不同的密码。可以根据可用的计算资源更改迭代计数。
The key size can be reduced to 128 bits, which is still considered "strong" encryption, but it doesn't give much of a safety margin if attacks are discovered that weaken AES.
密钥大小可以减少到128位,这仍然被认为是“强大的”加密,但是如果攻击被发现削弱了AES,它就不会提供很大的安全余量。
Used with a proper block-chaining mode, the same derived key can be used to encrypt many messages. In CBC, a random initialization vector (IV) is generated for each message, yielding different cipher text even if the plain text is identical. CBC may not be the most secure mode available to you (see AEAD below); there are many other modes with different security properties, but they all use a similar random input. In any case, the outputs of each encryption operation are the cipher text and the initialization vector:
使用适当的块链接模式,可以使用相同的派生密钥对许多消息进行加密。在CBC中,为每个消息生成一个随机初始化向量(IV),即使纯文本是相同的,也会产生不同的密码文本。CBC可能不是最安全的模式(见下面的AEAD);有许多其他的模式具有不同的安全属性,但它们都使用类似的随机输入。在任何情况下,每个加密操作的输出都是密文和初始化向量:
/* Encrypt the message. */
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, secret);
AlgorithmParameters params = cipher.getParameters();
byte[] iv = params.getParameterSpec(IvParameterSpec.class).getIV();
byte[] ciphertext = cipher.doFinal("Hello, World!".getBytes("UTF-8"));
Store the ciphertext
and the iv
. On decryption, the SecretKey
is regenerated in exactly the same way, using using the password with the same salt and iteration parameters. Initialize the cipher with this key and the initialization vector stored with the message:
存储密文和iv.在解密时,秘钥会以完全相同的方式重新生成,使用相同的盐和迭代参数使用密码。用此键初始化密码,并将初始化向量存储在消息中:
/* Decrypt the message, given derived key and initialization vector. */
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.DECRYPT_MODE, secret, new IvParameterSpec(iv));
String plaintext = new String(cipher.doFinal(ciphertext), "UTF-8");
System.out.println(plaintext);
Java 7 included API support for AEAD cipher modes, and the "SunJCE" provider included with OpenJDK and Oracle distributions implements these beginning with Java 8. One of these modes is strongly recommended in place of CBC; it will protect the integrity of the data as well as their privacy.
Java 7包含了对AEAD密码模式的API支持,而OpenJDK和Oracle发行版中包含的“SunJCE”提供程序从Java 8开始实现这些功能。其中一种模式被强烈推荐用于CBC;它将保护数据的完整性和隐私。
A java.security.InvalidKeyException
with the message "Illegal key size or default parameters" means that the cryptography strength is limited; the unlimited strength jurisdiction policy files are not in the correct location. In a JDK, they should be placed under ${jdk}/jre/lib/security
java.security。使用“非法密钥大小或默认参数”的消息无效,这意味着加密强度是有限的;无限制的权限权限策略文件不在正确的位置。在JDK中,它们应该置于${JDK}/jre/lib/安全性之下。
Based on the problem description, it sounds like the policy files are not correctly installed. Systems can easily have multiple Java runtimes; double-check to make sure that the correct location is being used.
根据问题描述,似乎策略文件没有正确安装。系统可以很容易地拥有多个Java运行时;再次检查以确保使用正确的位置。
#2
54
Consider using the Spring Security Crypto Module
The Spring Security Crypto module provides support for symmetric encryption, key generation, and password encoding. The code is distributed as part of the core module but has no dependencies on any other Spring Security (or Spring) code.
Spring Security Crypto模块提供了对对称加密、密钥生成和密码编码的支持。代码是作为核心模块的一部分分发的,但对其他Spring安全性(或Spring)代码没有依赖性。
It's provides a simple abstraction for encryption and seems to match what's required here,
它为加密提供了一个简单的抽象,并且似乎符合这里的要求,
The "standard" encryption method is 256-bit AES using PKCS #5's PBKDF2 (Password-Based Key Derivation Function #2). This method requires Java 6. The password used to generate the SecretKey should be kept in a secure place and not be shared. The salt is used to prevent dictionary attacks against the key in the event your encrypted data is compromised. A 16-byte random initialization vector is also applied so each encrypted message is unique.
“标准”加密方法是使用PKCS #5的PBKDF2(基于密码的关键派生函数#2)256位AES。此方法需要Java 6。用于生成秘密密钥的密码应该保存在安全的地方,而不是共享。在您的加密数据被破坏时,使用salt来防止字典对密钥的攻击。还应用了一个16字节的随机初始化向量,因此每个加密的消息都是唯一的。
A look at the internals reveals a structure similar to erickson's answer.
看一下内部结构,就会发现一个类似erickson答案的结构。
As noted in the question, this also requires the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy (else you'll encounter InvalidKeyException: Illegal Key Size
). It's downloadable for Java 6, Java 7 and Java 8.
正如在问题中所指出的,这也需要Java加密扩展(JCE)无限强度权限管理策略(否则您将遇到InvalidKeyException:非法密钥大小)。它可以下载到Java 6、Java 7和Java 8。
Example usage
import org.springframework.security.crypto.encrypt.Encryptors;
import org.springframework.security.crypto.encrypt.TextEncryptor;
import org.springframework.security.crypto.keygen.KeyGenerators;
public class CryptoExample {
public static void main(String[] args) {
final String password = "I AM SHERLOCKED";
final String salt = KeyGenerators.string().generateKey();
TextEncryptor encryptor = Encryptors.text(password, salt);
System.out.println("Salt: \"" + salt + "\"");
String textToEncrypt = "*royal secrets*";
System.out.println("Original text: \"" + textToEncrypt + "\"");
String encryptedText = encryptor.encrypt(textToEncrypt);
System.out.println("Encrypted text: \"" + encryptedText + "\"");
// Could reuse encryptor but wanted to show reconstructing TextEncryptor
TextEncryptor decryptor = Encryptors.text(password, salt);
String decryptedText = decryptor.decrypt(encryptedText);
System.out.println("Decrypted text: \"" + decryptedText + "\"");
if(textToEncrypt.equals(decryptedText)) {
System.out.println("Success: decrypted text matches");
} else {
System.out.println("Failed: decrypted text does not match");
}
}
}
And sample output,
示例输出,
Salt: "feacbc02a3a697b0" Original text: "*royal secrets*" Encrypted text: "7c73c5a83fa580b5d6f8208768adc931ef3123291ac8bc335a1277a39d256d9a" Decrypted text: "*royal secrets*" Success: decrypted text matches
#3
30
After reading through erickson's suggestions, and gleaning what I could from a couple other postings and this example here, I've attempted to update Doug's code with the recommended changes. Feel free to edit to make it better.
在阅读了erickson的建议后,我从其他的帖子和这里的例子中得到了我可以得到的信息,我尝试用推荐的修改来更新Doug的代码。请随意编辑,以使其更好。
- Initialization Vector is no longer fixed
- 初始化向量不再是固定的。
- encryption key is derived using code from erickson
- 加密密钥是使用erickson的代码派生出来的。
- 8 byte salt is generated in setupEncrypt() using SecureRandom()
- 使用SecureRandom()在setupEncrypt()中生成8字节的盐
- decryption key is generated from the encryption salt and password
- 解密密钥由加密盐和密码生成。
- decryption cipher is generated from decryption key and initialization vector
- 解密密码由解密密钥和初始化向量生成。
- removed hex twiddling in lieu of org.apache.commons codec Hex routines
- 删除了hex twiddling代替org.apache.commons codec hex例程。
Some notes: This uses a 128 bit encryption key - java apparently won't do 256 bit encryption out-of-the-box. Implementing 256 requires installing some extra files into the java install directory.
一些注释:这使用了128位加密密钥- java显然不会在开箱即用256位加密。实现256需要在java安装目录中安装一些额外的文件。
Also, I'm not a crypto person. Take heed.
而且,我不是一个秘密的人。要谨慎。
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.security.AlgorithmParameters;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.InvalidParameterSpecException;
import java.security.spec.KeySpec;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.CipherInputStream;
import javax.crypto.CipherOutputStream;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.SecretKeySpec;
import org.apache.commons.codec.DecoderException;
import org.apache.commons.codec.binary.Hex;
public class Crypto
{
String mPassword = null;
public final static int SALT_LEN = 8;
byte [] mInitVec = null;
byte [] mSalt = null;
Cipher mEcipher = null;
Cipher mDecipher = null;
private final int KEYLEN_BITS = 128; // see notes below where this is used.
private final int ITERATIONS = 65536;
private final int MAX_FILE_BUF = 1024;
/**
* create an object with just the passphrase from the user. Don't do anything else yet
* @param password
*/
public Crypto (String password)
{
mPassword = password;
}
/**
* return the generated salt for this object
* @return
*/
public byte [] getSalt ()
{
return (mSalt);
}
/**
* return the initialization vector created from setupEncryption
* @return
*/
public byte [] getInitVec ()
{
return (mInitVec);
}
/**
* debug/print messages
* @param msg
*/
private void Db (String msg)
{
System.out.println ("** Crypt ** " + msg);
}
/**
* this must be called after creating the initial Crypto object. It creates a salt of SALT_LEN bytes
* and generates the salt bytes using secureRandom(). The encryption secret key is created
* along with the initialization vectory. The member variable mEcipher is created to be used
* by the class later on when either creating a CipherOutputStream, or encrypting a buffer
* to be written to disk.
*
* @throws NoSuchAlgorithmException
* @throws InvalidKeySpecException
* @throws NoSuchPaddingException
* @throws InvalidParameterSpecException
* @throws IllegalBlockSizeException
* @throws BadPaddingException
* @throws UnsupportedEncodingException
* @throws InvalidKeyException
*/
public void setupEncrypt () throws NoSuchAlgorithmException,
InvalidKeySpecException,
NoSuchPaddingException,
InvalidParameterSpecException,
IllegalBlockSizeException,
BadPaddingException,
UnsupportedEncodingException,
InvalidKeyException
{
SecretKeyFactory factory = null;
SecretKey tmp = null;
// crate secureRandom salt and store as member var for later use
mSalt = new byte [SALT_LEN];
SecureRandom rnd = new SecureRandom ();
rnd.nextBytes (mSalt);
Db ("generated salt :" + Hex.encodeHexString (mSalt));
factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
/* Derive the key, given password and salt.
*
* in order to do 256 bit crypto, you have to muck with the files for Java's "unlimted security"
* The end user must also install them (not compiled in) so beware.
* see here: http://www.javamex.com/tutorials/cryptography/unrestricted_policy_files.shtml
*/
KeySpec spec = new PBEKeySpec (mPassword.toCharArray (), mSalt, ITERATIONS, KEYLEN_BITS);
tmp = factory.generateSecret (spec);
SecretKey secret = new SecretKeySpec (tmp.getEncoded(), "AES");
/* Create the Encryption cipher object and store as a member variable
*/
mEcipher = Cipher.getInstance ("AES/CBC/PKCS5Padding");
mEcipher.init (Cipher.ENCRYPT_MODE, secret);
AlgorithmParameters params = mEcipher.getParameters ();
// get the initialization vectory and store as member var
mInitVec = params.getParameterSpec (IvParameterSpec.class).getIV();
Db ("mInitVec is :" + Hex.encodeHexString (mInitVec));
}
/**
* If a file is being decrypted, we need to know the pasword, the salt and the initialization vector (iv).
* We have the password from initializing the class. pass the iv and salt here which is
* obtained when encrypting the file initially.
*
* @param initvec
* @param salt
* @throws NoSuchAlgorithmException
* @throws InvalidKeySpecException
* @throws NoSuchPaddingException
* @throws InvalidKeyException
* @throws InvalidAlgorithmParameterException
* @throws DecoderException
*/
public void setupDecrypt (String initvec, String salt) throws NoSuchAlgorithmException,
InvalidKeySpecException,
NoSuchPaddingException,
InvalidKeyException,
InvalidAlgorithmParameterException,
DecoderException
{
SecretKeyFactory factory = null;
SecretKey tmp = null;
SecretKey secret = null;
// since we pass it as a string of input, convert to a actual byte buffer here
mSalt = Hex.decodeHex (salt.toCharArray ());
Db ("got salt " + Hex.encodeHexString (mSalt));
// get initialization vector from passed string
mInitVec = Hex.decodeHex (initvec.toCharArray ());
Db ("got initvector :" + Hex.encodeHexString (mInitVec));
/* Derive the key, given password and salt. */
// in order to do 256 bit crypto, you have to muck with the files for Java's "unlimted security"
// The end user must also install them (not compiled in) so beware.
// see here:
// http://www.javamex.com/tutorials/cryptography/unrestricted_policy_files.shtml
factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
KeySpec spec = new PBEKeySpec(mPassword.toCharArray (), mSalt, ITERATIONS, KEYLEN_BITS);
tmp = factory.generateSecret(spec);
secret = new SecretKeySpec(tmp.getEncoded(), "AES");
/* Decrypt the message, given derived key and initialization vector. */
mDecipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
mDecipher.init(Cipher.DECRYPT_MODE, secret, new IvParameterSpec(mInitVec));
}
/**
* This is where we write out the actual encrypted data to disk using the Cipher created in setupEncrypt().
* Pass two file objects representing the actual input (cleartext) and output file to be encrypted.
*
* there may be a way to write a cleartext header to the encrypted file containing the salt, but I ran
* into uncertain problems with that.
*
* @param input - the cleartext file to be encrypted
* @param output - the encrypted data file
* @throws IOException
* @throws IllegalBlockSizeException
* @throws BadPaddingException
*/
public void WriteEncryptedFile (File input, File output) throws
IOException,
IllegalBlockSizeException,
BadPaddingException
{
FileInputStream fin;
FileOutputStream fout;
long totalread = 0;
int nread = 0;
byte [] inbuf = new byte [MAX_FILE_BUF];
fout = new FileOutputStream (output);
fin = new FileInputStream (input);
while ((nread = fin.read (inbuf)) > 0 )
{
Db ("read " + nread + " bytes");
totalread += nread;
// create a buffer to write with the exact number of bytes read. Otherwise a short read fills inbuf with 0x0
// and results in full blocks of MAX_FILE_BUF being written.
byte [] trimbuf = new byte [nread];
for (int i = 0; i < nread; i++)
trimbuf[i] = inbuf[i];
// encrypt the buffer using the cipher obtained previosly
byte [] tmp = mEcipher.update (trimbuf);
// I don't think this should happen, but just in case..
if (tmp != null)
fout.write (tmp);
}
// finalize the encryption since we've done it in blocks of MAX_FILE_BUF
byte [] finalbuf = mEcipher.doFinal ();
if (finalbuf != null)
fout.write (finalbuf);
fout.flush();
fin.close();
fout.close();
fout.close ();
Db ("wrote " + totalread + " encrypted bytes");
}
/**
* Read from the encrypted file (input) and turn the cipher back into cleartext. Write the cleartext buffer back out
* to disk as (output) File.
*
* I left CipherInputStream in here as a test to see if I could mix it with the update() and final() methods of encrypting
* and still have a correctly decrypted file in the end. Seems to work so left it in.
*
* @param input - File object representing encrypted data on disk
* @param output - File object of cleartext data to write out after decrypting
* @throws IllegalBlockSizeException
* @throws BadPaddingException
* @throws IOException
*/
public void ReadEncryptedFile (File input, File output) throws
IllegalBlockSizeException,
BadPaddingException,
IOException
{
FileInputStream fin;
FileOutputStream fout;
CipherInputStream cin;
long totalread = 0;
int nread = 0;
byte [] inbuf = new byte [MAX_FILE_BUF];
fout = new FileOutputStream (output);
fin = new FileInputStream (input);
// creating a decoding stream from the FileInputStream above using the cipher created from setupDecrypt()
cin = new CipherInputStream (fin, mDecipher);
while ((nread = cin.read (inbuf)) > 0 )
{
Db ("read " + nread + " bytes");
totalread += nread;
// create a buffer to write with the exact number of bytes read. Otherwise a short read fills inbuf with 0x0
byte [] trimbuf = new byte [nread];
for (int i = 0; i < nread; i++)
trimbuf[i] = inbuf[i];
// write out the size-adjusted buffer
fout.write (trimbuf);
}
fout.flush();
cin.close();
fin.close ();
fout.close();
Db ("wrote " + totalread + " encrypted bytes");
}
/**
* adding main() for usage demonstration. With member vars, some of the locals would not be needed
*/
public static void main(String [] args)
{
// create the input.txt file in the current directory before continuing
File input = new File ("input.txt");
File eoutput = new File ("encrypted.aes");
File doutput = new File ("decrypted.txt");
String iv = null;
String salt = null;
Crypto en = new Crypto ("mypassword");
/*
* setup encryption cipher using password. print out iv and salt
*/
try
{
en.setupEncrypt ();
iv = Hex.encodeHexString (en.getInitVec ()).toUpperCase ();
salt = Hex.encodeHexString (en.getSalt ()).toUpperCase ();
}
catch (InvalidKeyException e)
{
e.printStackTrace();
}
catch (NoSuchAlgorithmException e)
{
e.printStackTrace();
}
catch (InvalidKeySpecException e)
{
e.printStackTrace();
}
catch (NoSuchPaddingException e)
{
e.printStackTrace();
}
catch (InvalidParameterSpecException e)
{
e.printStackTrace();
}
catch (IllegalBlockSizeException e)
{
e.printStackTrace();
}
catch (BadPaddingException e)
{
e.printStackTrace();
}
catch (UnsupportedEncodingException e)
{
e.printStackTrace();
}
/*
* write out encrypted file
*/
try
{
en.WriteEncryptedFile (input, eoutput);
System.out.printf ("File encrypted to " + eoutput.getName () + "\niv:" + iv + "\nsalt:" + salt + "\n\n");
}
catch (IllegalBlockSizeException e)
{
e.printStackTrace();
}
catch (BadPaddingException e)
{
e.printStackTrace();
}
catch (IOException e)
{
e.printStackTrace();
}
/*
* decrypt file
*/
Crypto dc = new Crypto ("mypassword");
try
{
dc.setupDecrypt (iv, salt);
}
catch (InvalidKeyException e)
{
e.printStackTrace();
}
catch (NoSuchAlgorithmException e)
{
e.printStackTrace();
}
catch (InvalidKeySpecException e)
{
e.printStackTrace();
}
catch (NoSuchPaddingException e)
{
e.printStackTrace();
}
catch (InvalidAlgorithmParameterException e)
{
e.printStackTrace();
}
catch (DecoderException e)
{
e.printStackTrace();
}
/*
* write out decrypted file
*/
try
{
dc.ReadEncryptedFile (eoutput, doutput);
System.out.println ("decryption finished to " + doutput.getName ());
}
catch (IllegalBlockSizeException e)
{
e.printStackTrace();
}
catch (BadPaddingException e)
{
e.printStackTrace();
}
catch (IOException e)
{
e.printStackTrace();
}
}
}
#4
11
I've implemented the erickson's answer in a really simple class:
Java AES 256-bit Encryption/Decryption class
If you get the java.security.InvalidKeyException
you have to install the Java Cryptography Extension (JCE) unlimited strength jurisdiction policy files:
我在一个非常简单的类中实现了erickson的答案:Java AES 256位加密/解密类,如果您获得了Java .security。您必须安装Java Cryptography Extension (JCE)无限强度权限权限策略文件:
- Java 6 link
- Java 6链接
- Java 7 link
- Java 7的链接
Just place the jars in your {JDK HOME}\jre\lib\security
只需将jar放在您的{JDK HOME}\jre\lib\安全性中。
#5
6
Generating your own key from a byte array is easy:
从字节数组中生成自己的密钥很简单:
byte[] raw = ...; // 32 bytes in size for a 256 bit key
Key skey = new javax.crypto.spec.SecretKeySpec(raw, "AES");
But creating a 256-bit key isn't enough. If the key generator cannot generate 256-bit keys for you, then the Cipher
class probably doesn't support AES 256-bit either. You say you have the unlimited jurisdiction patch installed, so the AES-256 cipher should be supported (but then 256-bit keys should be too, so this might be a configuration problem).
但是创建一个256位的密钥是不够的。如果密钥生成器不能为您生成256位密钥,那么Cipher类可能也不支持AES 256位。您说您已经安装了无限权限补丁,因此应该支持AES-256密码(但是256位的密钥也应该被支持,所以这可能是一个配置问题)。
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, skey);
byte[] encrypted = cipher.doFinal(plainText.getBytes());
A workaround for lack of AES-256 support is to take some freely available implementation of AES-256, and use it as a custom provider. This involves creating your own Provider
subclass and using it with Cipher.getInstance(String, Provider)
. But this can be an involved process.
缺少AES-256支持的解决方案是获取一些免费的AES-256实现,并将其作为自定义提供程序使用。这包括创建您自己的Provider子类并使用Cipher来使用它。getInstance(字符串,提供者)。但这可能是一个复杂的过程。
#6
5
What I've done in the past is hash the key via something like SHA256, then extract the bytes from the hash into the key byte[].
我过去所做的是通过像SHA256这样的东西来哈希键,然后从散列中提取字节到关键字节[]。
After you have your byte[] you can simply do:
当你有了你的字节[]你可以简单地做:
SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, key);
byte[] encryptedBytes = cipher.doFinal(clearText.getBytes());
#7
3
Adding to @Wufoo's edits, the following version uses InputStreams rather than files to make working with a variety of files easier. It also stores the IV and Salt in the beginning of the file, making it so only the password needs to be tracked. Since the IV and Salt do not need to be secret, this makes life a little easier.
添加到@Wufoo的编辑器,下面的版本使用InputStreams而不是文件来简化各种文件的工作。它还在文件的开头存储了IV和盐,因此只需要跟踪密码。因为四和盐不需要是秘密,这使得生活更容易。
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.security.AlgorithmParameters;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.InvalidParameterSpecException;
import java.security.spec.KeySpec;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.CipherInputStream;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.SecretKeySpec;
public class AES {
public final static int SALT_LEN = 8;
static final String HEXES = "0123456789ABCDEF";
String mPassword = null;
byte[] mInitVec = null;
byte[] mSalt = new byte[SALT_LEN];
Cipher mEcipher = null;
Cipher mDecipher = null;
private final int KEYLEN_BITS = 128; // see notes below where this is used.
private final int ITERATIONS = 65536;
private final int MAX_FILE_BUF = 1024;
/**
* create an object with just the passphrase from the user. Don't do anything else yet
* @param password
*/
public AES(String password) {
mPassword = password;
}
public static String byteToHex(byte[] raw) {
if (raw == null) {
return null;
}
final StringBuilder hex = new StringBuilder(2 * raw.length);
for (final byte b : raw) {
hex.append(HEXES.charAt((b & 0xF0) >> 4)).append(HEXES.charAt((b & 0x0F)));
}
return hex.toString();
}
public static byte[] hexToByte(String hexString) {
int len = hexString.length();
byte[] ba = new byte[len / 2];
for (int i = 0; i < len; i += 2) {
ba[i / 2] = (byte) ((Character.digit(hexString.charAt(i), 16) << 4)
+ Character.digit(hexString.charAt(i + 1), 16));
}
return ba;
}
/**
* debug/print messages
* @param msg
*/
private void Db(String msg) {
System.out.println("** Crypt ** " + msg);
}
/**
* This is where we write out the actual encrypted data to disk using the Cipher created in setupEncrypt().
* Pass two file objects representing the actual input (cleartext) and output file to be encrypted.
*
* there may be a way to write a cleartext header to the encrypted file containing the salt, but I ran
* into uncertain problems with that.
*
* @param input - the cleartext file to be encrypted
* @param output - the encrypted data file
* @throws IOException
* @throws IllegalBlockSizeException
* @throws BadPaddingException
*/
public void WriteEncryptedFile(InputStream inputStream, OutputStream outputStream)
throws IOException, IllegalBlockSizeException, BadPaddingException {
try {
long totalread = 0;
int nread = 0;
byte[] inbuf = new byte[MAX_FILE_BUF];
SecretKeyFactory factory = null;
SecretKey tmp = null;
// crate secureRandom salt and store as member var for later use
mSalt = new byte[SALT_LEN];
SecureRandom rnd = new SecureRandom();
rnd.nextBytes(mSalt);
Db("generated salt :" + byteToHex(mSalt));
factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
/*
* Derive the key, given password and salt.
*
* in order to do 256 bit crypto, you have to muck with the files for Java's "unlimted security"
* The end user must also install them (not compiled in) so beware.
* see here: http://www.javamex.com/tutorials/cryptography/unrestricted_policy_files.shtml
*/
KeySpec spec = new PBEKeySpec(mPassword.toCharArray(), mSalt, ITERATIONS, KEYLEN_BITS);
tmp = factory.generateSecret(spec);
SecretKey secret = new SecretKeySpec(tmp.getEncoded(), "AES");
/*
* Create the Encryption cipher object and store as a member variable
*/
mEcipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
mEcipher.init(Cipher.ENCRYPT_MODE, secret);
AlgorithmParameters params = mEcipher.getParameters();
// get the initialization vectory and store as member var
mInitVec = params.getParameterSpec(IvParameterSpec.class).getIV();
Db("mInitVec is :" + byteToHex(mInitVec));
outputStream.write(mSalt);
outputStream.write(mInitVec);
while ((nread = inputStream.read(inbuf)) > 0) {
Db("read " + nread + " bytes");
totalread += nread;
// create a buffer to write with the exact number of bytes read. Otherwise a short read fills inbuf with 0x0
// and results in full blocks of MAX_FILE_BUF being written.
byte[] trimbuf = new byte[nread];
for (int i = 0; i < nread; i++) {
trimbuf[i] = inbuf[i];
}
// encrypt the buffer using the cipher obtained previosly
byte[] tmpBuf = mEcipher.update(trimbuf);
// I don't think this should happen, but just in case..
if (tmpBuf != null) {
outputStream.write(tmpBuf);
}
}
// finalize the encryption since we've done it in blocks of MAX_FILE_BUF
byte[] finalbuf = mEcipher.doFinal();
if (finalbuf != null) {
outputStream.write(finalbuf);
}
outputStream.flush();
inputStream.close();
outputStream.close();
outputStream.close();
Db("wrote " + totalread + " encrypted bytes");
} catch (InvalidKeyException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
} catch (InvalidParameterSpecException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
} catch (NoSuchAlgorithmException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
} catch (NoSuchPaddingException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
} catch (InvalidKeySpecException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
}
}
/**
* Read from the encrypted file (input) and turn the cipher back into cleartext. Write the cleartext buffer back out
* to disk as (output) File.
*
* I left CipherInputStream in here as a test to see if I could mix it with the update() and final() methods of encrypting
* and still have a correctly decrypted file in the end. Seems to work so left it in.
*
* @param input - File object representing encrypted data on disk
* @param output - File object of cleartext data to write out after decrypting
* @throws IllegalBlockSizeException
* @throws BadPaddingException
* @throws IOException
*/
public void ReadEncryptedFile(InputStream inputStream, OutputStream outputStream)
throws IllegalBlockSizeException, BadPaddingException, IOException {
try {
CipherInputStream cin;
long totalread = 0;
int nread = 0;
byte[] inbuf = new byte[MAX_FILE_BUF];
// Read the Salt
inputStream.read(this.mSalt);
Db("generated salt :" + byteToHex(mSalt));
SecretKeyFactory factory = null;
SecretKey tmp = null;
SecretKey secret = null;
factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
KeySpec spec = new PBEKeySpec(mPassword.toCharArray(), mSalt, ITERATIONS, KEYLEN_BITS);
tmp = factory.generateSecret(spec);
secret = new SecretKeySpec(tmp.getEncoded(), "AES");
/* Decrypt the message, given derived key and initialization vector. */
mDecipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
// Set the appropriate size for mInitVec by Generating a New One
AlgorithmParameters params = mDecipher.getParameters();
mInitVec = params.getParameterSpec(IvParameterSpec.class).getIV();
// Read the old IV from the file to mInitVec now that size is set.
inputStream.read(this.mInitVec);
Db("mInitVec is :" + byteToHex(mInitVec));
mDecipher.init(Cipher.DECRYPT_MODE, secret, new IvParameterSpec(mInitVec));
// creating a decoding stream from the FileInputStream above using the cipher created from setupDecrypt()
cin = new CipherInputStream(inputStream, mDecipher);
while ((nread = cin.read(inbuf)) > 0) {
Db("read " + nread + " bytes");
totalread += nread;
// create a buffer to write with the exact number of bytes read. Otherwise a short read fills inbuf with 0x0
byte[] trimbuf = new byte[nread];
for (int i = 0; i < nread; i++) {
trimbuf[i] = inbuf[i];
}
// write out the size-adjusted buffer
outputStream.write(trimbuf);
}
outputStream.flush();
cin.close();
inputStream.close();
outputStream.close();
Db("wrote " + totalread + " encrypted bytes");
} catch (Exception ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
}
}
/**
* adding main() for usage demonstration. With member vars, some of the locals would not be needed
*/
public static void main(String[] args) {
// create the input.txt file in the current directory before continuing
File input = new File("input.txt");
File eoutput = new File("encrypted.aes");
File doutput = new File("decrypted.txt");
String iv = null;
String salt = null;
AES en = new AES("mypassword");
/*
* write out encrypted file
*/
try {
en.WriteEncryptedFile(new FileInputStream(input), new FileOutputStream(eoutput));
System.out.printf("File encrypted to " + eoutput.getName() + "\niv:" + iv + "\nsalt:" + salt + "\n\n");
} catch (IllegalBlockSizeException | BadPaddingException | IOException e) {
e.printStackTrace();
}
/*
* decrypt file
*/
AES dc = new AES("mypassword");
/*
* write out decrypted file
*/
try {
dc.ReadEncryptedFile(new FileInputStream(eoutput), new FileOutputStream(doutput));
System.out.println("decryption finished to " + doutput.getName());
} catch (IllegalBlockSizeException | BadPaddingException | IOException e) {
e.printStackTrace();
}
}
}
#8
0
Use this class for encryption. It works.
使用该类进行加密。它的工作原理。
public class ObjectCrypter {
public static byte[] encrypt(byte[] ivBytes, byte[] keyBytes, byte[] mes)
throws NoSuchAlgorithmException,
NoSuchPaddingException,
InvalidKeyException,
InvalidAlgorithmParameterException,
IllegalBlockSizeException,
BadPaddingException, IOException {
AlgorithmParameterSpec ivSpec = new IvParameterSpec(ivBytes);
SecretKeySpec newKey = new SecretKeySpec(keyBytes, "AES");
Cipher cipher = null;
cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, newKey, ivSpec);
return cipher.doFinal(mes);
}
public static byte[] decrypt(byte[] ivBytes, byte[] keyBytes, byte[] bytes)
throws NoSuchAlgorithmException,
NoSuchPaddingException,
InvalidKeyException,
InvalidAlgorithmParameterException,
IllegalBlockSizeException,
BadPaddingException, IOException, ClassNotFoundException {
AlgorithmParameterSpec ivSpec = new IvParameterSpec(ivBytes);
SecretKeySpec newKey = new SecretKeySpec(keyBytes, "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.DECRYPT_MODE, newKey, ivSpec);
return cipher.doFinal(bytes);
}
}
}
And these are ivBytes and a random key;
这些是ivBytes和一个随机键;
String key = "e8ffc7e56311679f12b6fc91aa77a5eb";
byte[] ivBytes = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
keyBytes = key.getBytes("UTF-8");
#9
0
Consider using Encryptor4j
考虑使用Encryptor4j
First make sure you have Unlimited Strength Jurisdiction Policy files installed before your proceed so that you can use 256-bit AES keys.
首先确保您在继续进行之前已经安装了无限的权限权限策略文件,以便您可以使用256位AES键。
Then do the following:
然后执行以下操作:
String password = "mysupersecretpassword";
Key key = KeyFactory.AES.keyFromPassword(password.toCharArray());
Encryptor encryptor = new Encryptor(key, "AES/CBC/PKCS7Padding", 16);
You can now use the encryptor to encrypt your message. You can also perform streaming encryption if you'd like. It automatically generates and prepends a secure IV for your convenience.
您现在可以使用encryptor加密您的消息。如果您愿意,也可以执行流加密。它自动生成并预置一个安全的IV,为您的方便。
If it's a file that you wish to compress take a look at this answer Encrypting a large file with AES using JAVA for an even simpler approach.
如果是您希望压缩的文件,请查看此答案,并使用JAVA为更简单的方法加密一个大型文件。