如果有某位童鞋不幸看到了这篇文章,一定记着,要自己写一遍。(这很重要)
初识这道题的时候,逻辑上就不太懂题意,反反复复理解了半天也没什么思路,索性直接学习别人的代码,理解之后,自己写了一遍。前前后后花了两个半小时...
个人感觉,学习大牛的代码,然后自己写一遍会有很大的收获。(尝试过才知道)不知从哪看来的一句话说,每个大牛在菜鸟时期都曾经有一段默写别人代码的经历。
等他们成了大牛就会觉得很蠢,不愿分享这样的经验...但不得不说,这是个很好的提高过程。
题目概述
Background 背景
Many areas of Computer Science use simple, abstract domains for both analytical and empirical studies. For example, an early AI study of planning and robotics (STRIPS) used a block world in which a robot arm performed tasks involving the manipulation of blocks. 在计算机科学中的很多地方都会使用简单,抽象的方法来做分析和实验验究。比如在早期的规划学和机器人学的人工智能研究就利用一个积木世界,让机械臂执行操作积木的任务。
In this problem you will model a simple block world under certain rules and constraints. Rather than determine how to achieve a specified state, you will "program" a robotic arm to respond to a limited set of commands. 在这个问题中,你将在确定的规则和约束条件下构建一个简单的积木世界。这不是让你来研究怎样达到某种状态,而是编写一个“机械臂程序”来响应有限的命令集。
The Problem 问题
The problem is to parse a series of commands that instruct a robot arm in how to manipulate blocks that lie on a flat table. Initially there are n blocks on the table (numbered from 0 to n-1) with block bi adjacent to block bi + 1 for all 0 ≤ i < n - 1 as shown in the diagram below: 问题就是分析一系列的命令,告诉机械臂如何操纵放在一个平台上的积木。最初平台上有n个积木(编号由0到n - 1),对于任意的0 ≤ i < n - 1,积木bi都与bi + 1相临,图示如下:
Figure: Initial Blocks World 图:积木世界的初始状态
The valid commands for the robot arm that manipulates blocks are: 机械臂操作积木的有效指令列举如下:
- move a onto b
- where a and b are block numbers, puts block a onto block b after returning any blocks that are stacked on top of blocks a and b to their initial positions.
- a和b都是积木的编号,先将a和b上面所有的积木都放回原处,再将a放在b上。
- move a over b
- where a and b are block numbers, puts block a onto the top of the stack containing block b, after returning any blocks that are stacked on top of block a to their initial positions.
- a和b都是积木的编号,先将a上面所有的积木放回原处,再将a放在b上。(b上原有积木不动)
- pile a onto b
- where a and b are block numbers, moves the pile of blocks consisting of block a, and any blocks that are stacked above block a, onto block b. All blocks on top of block b are moved to their initial positions prior to the pile taking place. The blocks stacked above block a retain their order when moved.
- a和b都是积木的编号,将a和其上面所有的积极组成的一摞整体移动到b上。在移动前要先将b上面所有的积极都放回原处。移动的一摞积木要保持原来的顺序不变。
- pile a over b
- where a and b are block numbers, puts the pile of blocks consisting of block a, and any blocks that are stacked above block a, onto the top of the stack containing block b. The blocks stacked above block a retain their original order when moved.
- a和b都是积木的编号,将a和其上面所有的积极组成的一摞整体移动到b所在一摞积木的最上面一个积木上。移动的一摞积木要保持原来的顺序不变。
- quit
- terminates manipulations in the block world.
- 结束积木世界的操纵。
Any command in which a = b or in which a and b are in the same stack of blocks is an illegal command. All illegal commands should be ignored and should have no affect on the configuration of blocks. 当a = b或a和b处在同一摞时,任何企图操作a和b的命令都是非法的。所有非法的命令都要忽略,且不能对当前积木的状态产生作用。
The Input 输入
The input begins with an integer n on a line by itself representing the number of blocks in the block world. You may assume that 0 < n < 25. 输入由1个整数n开始开始,该整数独占一行,表示积木世界中的积木数量。你可以假定0 < n < 25。
The number of blocks is followed by a sequence of block commands, one command per line. Your program should process all commands until the quit command is encountered. 从积木数量值的下一行开始是一系列的命令,每条命令独占一行。你的程序要处理所有的命令直到输入退出命令。
You may assume that all commands will be of the form specified above. There will be no syntactically incorrect commands. 你可以假定所有的命令都按上文所示的格式给出。不会出现语法错误的命令。
The Output 输出
The output should consist of the final state of the blocks world. Each original block position numbered i (0 ≤ i < n where n is the number of blocks) should appear followed immediately by a colon. If there is at least a block on it, the colon must be followed by one space, followed by a list of blocks that appear stacked in that position with each block number separated from other block numbers by a space. Don't put any trailing spaces on a line. 以积木世界的最终状态作为输出。每一个原始积木的位置i(0 ≤ i < n,n为积木数量)后面都要紧跟一个冒号。如果至少有一个积木在该位置上,冒号后面都要紧跟一个空格,然后是该位置上所有积木编号的序列。每2个积木的编号之间以一个空格隔开。行尾不能出现多余的空格。
There should be one line of output for each block position (i.e., n lines of output where n is the integer on the first line of input). 每个积木位置独占一行(即第一行输入的n,对应输出n行数据)。
Sample Input 输入示例
10
move 9 onto 1
move 8 over 1
move 7 over 1
move 6 over 1
pile 8 over 6
pile 8 over 5
move 2 over 1
move 4 over 9
quit
Sample Output 输出示例
0: 0
1: 1 9 2 4
2:
3: 3
4:
5: 5 8 7 6
6:
7:
8:
9:
分析
因为不定长,所以选用vector容器
4个函数定义:
void find_block(int a,int& p,int& h);//找到木块a所在的堆和高度(pile和height)以引用的形式返回调用(就是说记录了a在哪个堆哪个高度的位置)
void clean_block(int p,int h);//如果出现onto和move指令,就需要把p堆高度为h的木块上方的所有木块移回原位
void move_block(int p,int h,int p2); //移动过程,把第p堆高度为h极其上方的木块整体移动到p2堆的顶部
void print1();//输出
数据结构:
理解题意,如果是move就是先把a上面的还原,如果是onto就是先把b上面的还原。然后,就是移动一堆到另一堆的上面。
1 #include<iostream> 2 #include<string> 3 #include<vector> 4 void find_block(int a,int& p,int& h); 5 void clean_block(int p,int h); 6 void move_block(int p,int h,int p2); 7 void print1(); 8 using namespace std; 9 const int maxn=30; 10 int n; 11 vector<int>sblock[maxn];//这样可以确定容器的值不超过30 12 int main() 13 { 14 string s1,s2; 15 int a,b; 16 cin>>n; 17 for(int i=0;i<n;i++) sblock[i].push_back(i); 18 while(cin>>s1) 19 { 20 if(s1=="quit")break; 21 cin>>a>>s2>>b; 22 int ha,hb,pa,pb;//定义用来确定a和b的堆和高度 23 find_block(a,pa,ha); 24 find_block(b,pb,hb); 25 if(pa==pb)continue;//a,b的位置相同了,就返回重新输入 26 27 //数据结构 28 if(s1=="move")clean_block(pa,ha); 29 if(s2=="onto")clean_block(pb,hb); 30 move_block(pa,ha,pb); 31 } 32 print1(); 33 return 0; 34 } 35 //找到木块a所在的堆和高度(pile和height)以引用的形式返回调用(就是说记录了a在哪个堆哪个高度的位置) 36 void find_block(int a,int& p,int& h) 37 { 38 for(p=0;p<n;p++) 39 for(h=0;h<sblock[p].size();h++) 40 if(sblock[p][h]==a)return; 41 } 42 //如果出现onto和move指令,就需要把p堆高度为h的木块上方的所有木块移回原位 43 void clean_block(int p,int h) 44 { 45 for(int i=h+1;i<sblock[p].size();i++) 46 { 47 int init1=sblock[p][i]; 48 sblock[init1].push_back(init1); 49 } 50 sblock[p].resize(h+1);//v.resize(int n,element)表示调整容器v的大小为n,扩容后的每个元素的值为element,默认为0 51 } 52 //移动过程,把第p堆高度为h极其上方的木块整体移动到p2堆的顶部 53 void move_block(int p,int h,int p2) 54 { 55 for(int i=h;i<sblock[p].size();i++) 56 sblock[p2].push_back(sblock[p][i]); 57 sblock[p].resize(h); 58 } 59 void print1() 60 { 61 for(int i=0;i<n;i++) 62 { 63 cout<<i<<":"; 64 for(int j=0;j<sblock[i].size();j++) 65 cout<<" "<<sblock[i][j]; 66 cout<<endl; 67 } 68 }