P2144 [FJOI2007]轮状病毒
题目描述
轮状病毒有很多变种。许多轮状病毒都是由一个轮状基产生。一个n轮状基由圆环上n个不同的基原子和圆心的一个核原子构成。2个原子之间的边表示这2个原子之间的信息通道,如图1。
n轮状病毒的产生规律是在n轮状基中删除若干边,使各原子之间有唯一一条信息通道。例如,共有16个不同的3轮状病毒,入图2所示。
给定n(N<=100),编程计算有多少个不同的n轮状病毒。
输入输出格式
输入格式:
第一行有1个正整数n。
输出格式:
将编程计算出的不同的n轮状病毒数输出
输入输出样例
Solution
然而正解是一系列看都看不懂的公式推导.....
可能老李给我们这道题是为了复习一下高精度八.....
于是他的目的达到了,大家果然都忘记叻!
那么首先打表找规律,打表程序见某位dalao,用并查集实现的超级暴力。
然后找规律,目前了解到有两种规律:1)以1、3开头的斐波拉契数列的平方,如果$n$是偶数减4,奇数不减。2)$f[i]=3f[i-1]-f[i-2]+2$
个人认为第一种比较好找,所以用的第一种。因为斐波拉契数列到后面非常大,所以写高精。
这里用了高精加、乘、减,乱搞搞就过了。
Code
#include<bits/stdc++.h>
using namespace std; int n; struct Node {
int a[], len;
}; Node mul(Node a, Node b) {
Node c;
memset(c.a, , sizeof(c.a));
for(int i = ; i <= a.len; i ++) {
int x = ;
for(int j = ; j <= b.len; j ++) {
c.a[i + j - ] = a.a[i] * b.a[j] + x + c.a[i + j - ];
x = c.a[i + j - ] / ;
c.a[i + j - ] %= ;
}
c.a[i + b.len] = x;
}
c.len = a.len + b.len;
while(c.a[c.len] == && c.len > ) c.len --;
return c;
} Node add(Node a, Node b) {
Node c;
memset(c.a, , sizeof(c.a));
for(int i = ; i <= max(a.len, b.len); i ++) {
int x = ;
c.a[i] = b.a[i] + a.a[i] + c.a[i];
x = c.a[i] / ;
c.a[i] %= ;
c.a[i + ] += x;
}
c.len = max(a.len, b.len) + ;
while(c.a[c.len] == && c.len > ) c.len --;
return c;
} Node sub(Node a, int x) {
Node c;
c.len = max(a.len, );
c.a[] = a.a[] - ;
for(int i = ; i <= c.len; i ++) c.a[i] = a.a[i];
for(int i = ; i <= c.len; i ++) {
if(c.a[i] < ) {
c.a[i + ] --;
c.a[i] = (c.a[i] + ) % ;
}
}
while(c.a[a.len] == && c.len > ) c.len --;
return c;
} void work() {
Node a, b, c;
memset(a.a, , sizeof(a.a));
memset(b.a, , sizeof(b.a));
a.len = b.len = ;
a.a[] = , b.a[] = ;
for(int i = ; i <= n; i ++) {
c = add(a, b);
swap(a, b); swap(b, c);
}
c = mul(b, b);
if(n % == )
c = sub(c, );
for(int i = c.len; i >= ; i --)
printf("%d", c.a[i]);
} int main() {
scanf("%d", &n);
if(n >= ) work();
if(n == ) printf("");
if(n == ) printf("");
return ;
}