Minimum Window Substring
Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).
For example,
S = "ADOBECODEBANC"
T = "ABC"
Minimum window is "BANC"
.
Note:
If there is no such window in S that covers all characters in T, return the emtpy string ""
.
If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S.
由于大小写字母的ASCII码不大于128,因此开辟两个数组存储信息。
needFind数组存储T字符串每个字符出现次数。例如:needFind['A']=5意为T中A出现5次。
Found数组存储S字符串在[begin,end]窗口内每个字符出现次数。
算法核心思想如下:
在保证[begin,end]窗口包含T中所有字符的条件下,延伸end,收缩begin。
进行一次扫描后,记录符合条件的最小窗口(end-begin+1)表示的字符串。
有个问题:怎样才知道[begin,end]窗口包含了T中所有字符?
我使用count记录剩余“有效”字符数,当count达到0时,即可说明[begin,end]包含了T。
注意:“有效”的意思是指,当前延伸得到的S[end]字符,使得[begin,end]更进一步包含T,而不是重复劳动。
比如说,T="a", [begin,end]已经包含"a",再延伸得到"aa",只是无效操作,并没有使得[begin,end]更接近T,有效字符数仍为1.
class Solution {
public:
string minWindow(string S, string T) {
int begin = ;
int end = ;
int minbegin = ;
int minend = ;
int minSize = INT_MAX;
vector<int> needFind(, );
vector<int> Found(, );
for(int i = ; i < T.size(); i ++)
needFind[T[i]] ++;
Found[S[]] ++;
int count = T.size();
if(needFind[S[]] >= Found[S[]])
count --;
while(true)
{
if(count == )
{//shrink begin
while(Found[S[begin]] > needFind[S[begin]])
{
Found[S[begin]] --;
begin ++;
}
int size = end-begin+;
if(size < minSize)
{
minbegin = begin;
minend = end;
minSize = size;
}
}
if(end < S.size())
{
end ++;
Found[S[end]] ++;
if(needFind[S[end]] >= Found[S[end]])
count --;
}
else
break;
}
if(minSize != INT_MAX)
return S.substr(minbegin, minSize);
else
return "";
}
};