分布式任务系统gearman及python实例

时间:2021-02-02 18:08:34

Gearman是一个用来把工作委派给其他机器、分布式的调用更适合做某项工作的机器、并发的做某项工作在多个调用间做负载均衡、或用来在调用其它语言的函数的系统。Gearman是一个分发任务的程序框架,可以用在各种场合,开源、多语言支持、灵活、快速、可嵌入、可扩展、无消息大小限制、可容错,与Hadoop相比,Gearman更偏向于任务分发功能。它的任务分布非常简单,简单得可以只需要用脚本即可完成。Gearman最初用于LiveJournal的图片resize功能,由于图片resize需要消耗大量计算资 源,因此需要调度到后端多台服务器执行,完成任务之后返回前端再呈现到界面。

gearman的任务传递模式是一对一的,不能实现一对多,一个client通过job server最后只能够到达一个worker上。如果需要一对多,需要定义多个worker的function,依次向这些worker进行发送,非常的不方便。这一点就不如ZeroMQ,ZeroMQ支持的模式很多,能够满足各种消息队列需求。他们用在不同的场合,Gearman是分布式任务系统,而ZeroMQ是分布式消息系统,任务只需要做一次就行。

1. Server

1.1 Gearman工作原理

Gearman 服务有很多要素使得它不仅仅是一种提交和共享工作的方式,但是主要的系统只由三个组件组成: gearmand 守护进程(server),用于向 Gearman 服务提交请求的 client ,执行实际工作的 worker。其关系如下图所示:

分布式任务系统gearman及python实例

Gearmand server执行一个简单的功能,即从client收集job请求并充当一个注册器,而worker可以在此提交关于它们支持的job和操作类型的信息,这样server实际上就充当了Client和Worker的中间角色。Client将job直接丢给server,而server根据worker提交的信息,将这些job分发给worker来做,worker完成后也可返回结果,server将结果传回client。举个例子,在一个公司里面,有老板1、老板2、老板3(client),他们的任务就是出去喝酒唱歌拉项目(job),将拉来的项目直接交给公司的主管(server),而主管并不亲自来做这些项目,他将这些项目分给收手下的员工(worker)来做,员工做完工作后,将结果交给主管,主管将结果报告给老板们即可。

要使用gearman,首先得安装server,下载地址:https://launchpad.net/gearmand。当下载安装完成后,可以启动gearmand,启动有很多参数选项,可以man gearmand来查看,主要的 选项有:

  • -b, --backlog=BACKLOG       Number of backlog connections for listen. 
  • -d, --daemon                Daemon, detach and run in the background. 
  • -f, --file-descriptors=FDS  Number of file descriptors to allow for the process                             
  • (total connections will be slightly less). Default     is max allowed for user. 
  • -h, --help                  Print this help menu. 
  • -j, --job-retries=RETRIES   Number of attempts to run the job before the job  server removes it. Thisis helpful to ensure a bad  job does not crash all available workers. Default  is no limit. 
  • -l, --log-file=FILE         Log file to write errors and information to. Turning this option on also forces the first  verbose level to be enabled. 
  • -L, --listen=ADDRESS        Address the server should listen on. Default is  INADDR_ANY. 
  • -p, --port=PORT             Port the server should listen on. 
  • -P, --pid-file=FILE         File to write process ID out to. 
  • -r, --protocol=PROTOCOL     Load protocol module. 
  • -R, --round-robin           Assign work in round-robin order per  workerconnection. The default is to assign work in  the order of functions added by the worker. 
  • -q, --queue-type=QUEUE      Persistent queue type to use. 
  • -t, --threads=THREADS       Number of I/O threads to use. Default=0. 
  • -u, --user=USER             Switch to given user after startup. 
  • -v, --verbose               Increase verbosity level by one. 
  • -V, --version               Display the version of gearmand and exit. 
  • -w, --worker-wakeup=WORKERS Number of workers to wakeup for each job received.   The default is to wakeup all available workers.

启动gearmand:

sudo gearmand --pid-file=/var/run/gearmand/gearmand.pid --daemon --log-file=/var/log/gearman.log
若提示没有/var/log/gearman.log这个文件的话,自己新建一个就可以了。


1.2 实例化queue与容错

Gearman默认是将queue保存在内存中的,这样能够保障速速,但是遇到宕机或者server出现故障时,在内存中缓存在queue中的任务将会丢失。Gearman提供了了queue实例化的选项,能够将queue保存在数据库中,比如:SQLite3、Drizzle、MySQL、PostgresSQL、Redis(in dev)、MongoDB(in dev).在执行任务前,先将任务存入持久化队列中,当执行完成后再将该任务从持久化队列中删除。要使用db来实例化queue,除了在启动时加入-q参数和对应的数据库之外,还需要根据具体的数据库使用相应的选项,例如使用sqlit3来实例化queue,并指明使用用来存储queue的文件:

gearmand -d -q libsqlite3 --libsqlite3-db=/tmp/demon/gearman.db --listen=localhost --port=4370

再如使用mysql来实例化queue,选项为:

<pre name="code" class="plain">/usr/local/gearmand/sbin/gearmand  -d  -u root \
–queue-type=MySQL \
–mysql-host=localhost \
–mysql-port=3306 \
–mysql-user=gearman \
–mysql-password=123456 \
–mysql-db=gearman \
–mysql-table=gearman_queue
 

还要创建相应的数据库和表,并创建gearman用户,分配相应的权限:

CREATE DATABASE gearman;
CREATE TABLE `gearman_queue` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`unique_key` varchar(64) NOT NULL,
`function_name` varchar(255) NOT NULL,
`when_to_run` int(10) NOT NULL,
`priority` int(10) NOT NULL,
`data` longblob NOT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `unique_key_index` (`unique_key`,`function_name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

create USER gearman@localhost identified by ’123456′;
GRANT ALL on gearman.* to gearman@localhost;

可以在gearman的配置文件中加入相关配置,以免每次启动都需要写一堆东西:

# /etc/conf.d/gearmand: config file for /etc/init.d/gearmand

# Persistent queue store
# The following queue stores are available:
# drizzle|memcache|mysql|postgre|sqlite|tokyocabinet|none
# If you do not wish to use persistent queues, leave this option commented out.
# Note that persistent queue mechanisms are mutally exclusive.
PERSISTENT="mysql"

# Persistent queue settings for drizzle, mysql and postgre
#PERSISTENT_SOCKET=""
PERSISTENT_HOST="localhost"
PERSISTENT_PORT="3306"
PERSISTENT_USER="gearman"
PERSISTENT_PASS="your-pass-word-here"
PERSISTENT_DB="gearman"
PERSISTENT_TABLE="gearman_queue"

# Persistent queue settings for sqlite
#PERSISTENT_FILE=""

# Persistent queue settings for memcache
#PERSISTENT_SERVERLIST=""

# General settings
#
# -j, --job-retries=RETRIES   Number of attempts to run the job before the job
#                             server removes it. Thisis helpful to ensure a bad
#                             job does not crash all available workers. Default
#                             is no limit.
# -L, --listen=ADDRESS        Address the server should listen on. Default is
#                             INADDR_ANY.
# -p, --port=PORT             Port the server should listen on. Default=4730.
# -r, --protocol=PROTOCOL     Load protocol module.
# -t, --threads=THREADS       Number of I/O threads to use. Default=0.
# -v, --verbose               Increase verbosity level by one.
# -w, --worker-wakeup=WORKERS Number of workers to wakeup for each job received.
#                             The default is to wakeup all available workers.
GEARMAND_PARAMS="-L 127.0.0.1 --verbose=DEBUG"

这其实并不是一个很好的方案,因为当使用数据库来实例化queue时,会增加两个步骤:Client和worker必须连接到server上去读写job,并且数据库在处理的速度上也会大大降低。在大并发任务量的情况下,性能会受到直接影响,你会发现SQLite或者mysql并不能满足处理大量BLOB的性能要求,job会不断地积攒而得不到处理,给一个任务犹如石牛如一样海毫无反应。归根结底,需要根据自己的应用场景,合理设计一些测试用例和自动化脚本,通过实际的运行状态进行参数的调整。

job分布式系统一个基本的特点就是要有单点容错能力(no  single point failure),还不能有单点性能瓶颈(no single point of bottleneck)。即:一个节点坏了不影响整个系统的业务,一个节点的性能不能决定整个系统的性能。那如果server挂了该怎么办?解决方法是使用多个server:

gearmand -d -q libsqlite3  --listen=localhost --port=4370
gearmand -d -q libsqlite3  --listen=localhost --port=4371

每个client连接多个server,并使用负载最低的那个server,当该server挂掉之后,gearman会自动切换到另一个server上,如下图所示:

分布式任务系统gearman及python实例

分布式任务系统gearman及python实例


1.3 轮询调度

当job不断地增加时,我们可能需要增加worker服务器来增加处理能力,但你可能会发现任务并不是均匀地分布在各个worker服务器上,因为server分配任务给worker的方式默认按照循序分配的,比如你现有worker-A,在server上注册了5个worker进程,随着任务的增加,又加了一台worker-B,并向同一个server注册了5个worker进程。默认情况下,server会按照worker注册的先后顺序进行调度,即:只有给worker-A分配满任务后才会给worker-B分配任务,即分配方式是wA, wA,wA, wA,wA,wB, wB,wB, wB, wB。为了能够给worker-A和worker-B均匀地分配任务,server可以采用轮询的方式给worker服务器分配任务,即分配方式为: wA, wB, wA, wB ...,那么在启动server时加上选项:-R或者--round-robin


1.4 受限唤醒

根据gearman协议的设计,Worker 如果发现队列中没有任务需要处理,是可以通过发送 PRE_SLEEP 命令给服务器,告知说自己将进入睡眠状态。在这个状态下,Worker 不会再去主动抓取任务,只有服务器发送 NOOP 命令唤醒后,才会恢复正常的任务抓取和处理流程。因此 Gearmand 在收到任务时,会去尝试唤醒足够的 Worker 来抓取任务;此时如果 Worker 的总数超过可能的任务数,则有可能产生惊群效应。而通过 –worker-wakeup 参数,则可以指定收到任务时,需要唤醒多少个 Worker 进行处理,避免在 Worker 数量非常大时,发送大量不必要的 NOOP 报文,试图唤醒所有的 Worker。


1.6 线程模型

Gearman中有三种线程:

  1. 监听和管理线程。只有一个(负责接收连接,然后分配给I/O线程来处理,如果有多个I/O线程的话,同时也负责启动和关闭服务器,采用libevent来管理socket和信号管道)
  2. I/O线程。可以有多个(负责可读可写的系统调用和对包初步的解析,将初步解析的包放入各自的异步队列中,每个I/O线程都有自己的队列,所以竞争很少,通过-t选项来指定I/O线程数)
  3. 处理线程。只有一个(负责管理各种信息列表和哈希表,比如跟踪唯一键、工作跟踪句柄、函数、工作队列等。将处理结果信息包返回给I/O线程,I/O线程将该包挑选出来并向该连接发送数据)
其中第1, 3种线程对全局处理性能没有直接影响,虽然处理线程有可能成为瓶颈,但他的工作足够简单消耗可忽略不计,因此我们的性能调优主要目标是在IO线程的数量。对每个IO线程来说,它都会有一个libevent的实例;所有Gearman的操作会以异步任务方式提交到处理线程,并由IO线程获取完成实际操作,因此IO线程的数量是与可并行处理任务数成正比。Gearmand 提供 -t 参数调整总IO线程数,需要使用 libevent 1.4 以上版本提供多线程支持。


进程句柄数

另外一个影响大规模部署的是进程句柄数,Gearman会为每一个注册的Worker分配一个fd(文件描述符),而这个fd的总数是受用户限制的,可以使用 ulimit -n 命令查看当前限制
flier@debian:~$ ulimit -n
1024
flier@debian:~$ ulimit -HSn 4096 // 设置进程句柄数的最大软硬限制
4096
也就是说gearman缺省配置下,最多允许同时有小于1024个worker注册上来,fd用完之后的Worker和Client会出现连接超时或无响应等异常情况。因此,发生类似情况时,我们应首先检查 /proc/[PID]/fd/ 目录下的数量,是否已经超过 ulimit -n 的限制,并根据需要进行调整。而全系统的打开文件设置,可以参考 /proc/sys/fs/file-max 文件,并通过 sysctl -w fs.file-max=[NUM] 进行修改。
flier@debian:~$ cat /proc/sys/fs/file-max
24372
flier@debian:~# sysctl -w fs.file-max=100000
100000
Gearmand 本身也提供了调整句柄数量限制的功能,启动时则可以通过 -f或者–file-descriptors 参数指定,但非特权进程不能设置超过soft limit的数额。"The soft limit is the value that the kernel enforces for the corresponding resource. The hard limit acts as a ceiling for the soft limit: an unprivileged process may only set its soft limit to a value in the range from 0 up to the hard limit, and (irreversibly) lower its hard limit. A privileged process (under Linux: one with the
CAP_SYS_RESOURCE capability) may make arbitrary changes to either limit value."


2. Client

对于发送单个job,python-gearman提供了一个简单的函数:submit_job,可以将job发送到server,其定义如下:
GearmanClient. submit_job ( task data unique=None priority=None background=False wait_until_complete=True max_retries=0 , poll_timeout=None )

下面来看看gearman的一个简单样例:
import gearman
import time
from gearman.constants import JOB_UNKNOWN

def check_request_status(job_request):
    """check the job status"""
    if job_request.complete:
        print 'Job %s finished! Result: %s - %s' % (job_request.job.unique, job_request.state, job_request.result)
    elif job_request.time_out:
        print 'Job %s timed out!' % job_request.unique
    elif job_request.state == JOB_UNKNOWN:
        print "Job %s connection failed!" % job_request.unique

gm_client = gearman.GearmanClient(['localhost:4730','localhost:4731'])

complete_job_request = gm_client.submit_job("reverse", "Hello World!")
check_request_status(complete_job_request)
gm_client连接到本地的4730/4731端口的server上,然后用submit_job函数将”reverse“和参数“Hello World!"传给server,返回一个request,最后用check_request_status()函数检查这个request的状态。是不是很简单?

2.1  task与job

task与job是有区别的区别主要在于:
  1. Task是一组job,在下发后会执行并返回结果给调用方
  2. Task内的子任务悔下发给多个work并执行
  3. client下放给server的任务为job,而整个下方并返回结果的过程为task,每个job会在一个work上执行
  4. task是一个动态的概念,而job是一个静态的概念。这有点类似“进程”和“程序”概念的区别。既然是动态的概念,就有完成(complete)、超时(time_out)、携带的job不识别(JOB_UNKNOWN)等状态


2.2 job优先级(priority)

client在发送job的时候,可以设定job的优先级,只需要在submit_job函数中添加选项“priority=gearman.PRIORITY_HIGH”即可创建高优先级task,priority可以有三个选项:PRIORITY_HIGH、PRIORITY_LOW、PRIORITY_NONE(default)

2.3 同步与异步(background)

默认情况下,client以同步方式发送job到server,所谓的同步,即client在向server发送完job后,不停地询问该(组)job执行的情况,直到server返回结果。而异步方式则是client在得知task创建完成之后,不管该task的执行结果。要使client采用异步方式,则在submit_job加入参数“background=True”即可。下面展示了gearman同步/异步的方式时的时序图。
分布式任务系统gearman及python实例
由上面的同步时序图可知,client端在job执行的整个过程中,与job server端的链接都是保持着的,这也给job完成后job server返回执行结果给client提供了通路。同时,在job执行过程当中,client端还可以发起job status的查询。当然,这需要worker端的支持的。
分布式任务系统gearman及python实例
由上面的异步时序图可知,client提交完job,job server成功接收后返回JOB_CREATED响应之后,client就断开与job server之间的链接了。后续无论发生什么事情,client都是不关心的。同样,job的执行结果client端也没办法通过Gearman消息框架 获得。

2.4 阻塞与非阻塞(wait_until_complete)

client创建task时,默认情况下使用的是阻塞模式,所谓的阻塞模式在进程上的表现为:在执行完submit_job后,卡在此处等待server返回结果。而非阻塞模式则是一旦job被server接收,程序可以继续向下执行,我们可以在后面适当的位置(程序最后或者需要用到返回结果的地方)来检查并取回这些task的状态和结果。要使用非阻塞模式,则在submit_job里加入选项“wait_until_complete=False”即可。

2.5 送多个job

  • GearmanClient.submit_multiple_jobs(jobs_to_submit, background=False, wait_until_complete=True, max_retries=0, poll_timeout=None)
Takes a list of jobs_to_submit with dicts of {‘task’: task, ‘data’: data, ‘unique’: unique, ‘priority’: priority}
这里jobs_to_submit是一组job,每个job是上述格式的字典,这里解释一下unique,unique是设置task的unique key,即在小结2.1中的job_request.job.unique的值,如果不设置的话,会自动分配。
  • GearmanClient.wait_until_jobs_accepted(job_requests, poll_timeout=None)
Go into a select loop until all our jobs have moved to STATE_PENDING
  • GearmanClient.wait_until_jobs_completed(job_requests, poll_timeout=None)
Go into a select loop until all our jobs have completed or failed
  • GearmanClient.submit_multiple_requests(job_requests, wait_until_complete=True, poll_timeout=None)
Take Gearman JobRequests, assign them connections, and request that they be done.
  • GearmanClient.wait_until_jobs_accepted(job_requests, poll_timeout=None)
Go into a select loop until all our jobs have moved to STATE_PENDING
  • GearmanClient.wait_until_jobs_completed(job_requests, poll_timeout=None)
Go into a select loop until all our jobs have completed or failed

下面是官网给的一个同步非阻塞方式发送多个job的例子,在该例子的最后,在取得server返回结果之前,用了wait_until_jobs_completed函数来等待task中的所有job返回结果:

import time
gm_client = gearman.GearmanClient(['localhost:4730'])

list_of_jobs = [dict(task="task_name", data="binary data"), dict(task="other_task", data="other binary data")]
submitted_requests = gm_client.submit_multiple_jobs(list_of_jobs, background=False, wait_until_complete=False)

# Once we know our jobs are accepted, we can do other stuff and wait for results later in the function
# Similar to multithreading and doing a join except this is all done in a single process
time.sleep(1.0)

# Wait at most 5 seconds before timing out incomplete requests
completed_requests = gm_client.wait_until_jobs_completed(submitted_requests, poll_timeout=5.0)
for completed_job_request in completed_requests:
    check_request_status(completed_job_request)
下面这个例子中,用到了submit_multiple_requests函数对超时的请求再次检查。

import time
gm_client = gearman.GearmanClient(['localhost:4730'])

list_of_jobs = [dict(task="task_name", data="task binary string"), dict(task="other_task", data="other binary string")]
failed_requests = gm_client.submit_multiple_jobs(list_of_jobs, background=False)

# Let's pretend our assigned requests' Gearman servers all failed
assert all(request.state == JOB_UNKNOWN for request in failed_requests), "All connections didn't fail!"

# Let's pretend our assigned requests' don't fail but some simply timeout
retried_connection_failed_requests = gm_client.submit_multiple_requests(failed_requests, wait_until_complete=True, poll_timeout=1.0)

timed_out_requests = [job_request for job_request in retried_requests if job_request.timed_out]

# For our timed out requests, lets wait a little longer until they're complete
retried_timed_out_requests = gm_client.submit_multiple_requests(timed_out_requests, wait_until_complete=True, poll_timeout=4.0)

2.6 序列化

默认情况下,gearman的client只能传输的data只能是字符串格式的,因此,要传输python数据结构,必须使用序列化方法。所幸的是,GearmanClient提供了data_encoder,允许定义序列化和反序列化方法,例如:
import pickle

class PickleDataEncoder(gearman.DataEncoder):
    @classmethod
    def encode(cls, encodable_object):
        return pickle.dumps(encodable_object)

    @classmethod
    def decode(cls, decodable_string):
        return pickle.loads(decodable_string)

class PickleExampleClient(gearman.GearmanClient):
    data_encoder = PickleDataEncoder

my_python_object = {'hello': 'there'}

gm_client = PickleExampleClient(['localhost:4730'])
gm_client.submit_job("task_name", my_python_object)


3 worker

3.1 主要API

worker端同样提供了丰富的API,主要有:
  • GearmanWorker.set_client_id(client_id):设置自身ID
  • GearmanWorker.register_task(task, callback_function):为task注册处理函数callback_function,其中callback_function的定义格式为:
    def function_callback(calling_gearman_worker, current_job):
        return current_job.data
  • GearmanWorker.unregister_task(task):注销worker上定义的函数
  • GearmanWorker.work(poll_timeout=60.0): 无限次循环, 完成发送过来的job.
  • GearmanWorker.send_job_data(current_job, data, poll_timeout=None): Send a Gearman JOB_DATA update for an inflight job
  • GearmanWorker.send_job_status(current_job, numerator, denominator, poll_timeout=None):Send a Gearman JOB_STATUS update for an inflight job
  • GearmanWorker.send_job_warning(current_job, data, poll_timeout=None):Send a Gearman JOB_WARNING update for an inflight job

3.2 简单示例

而worker端其实和client端差不多,也是要连接到server端,不同的是,worker端需要绑定函数来处理具体的job:
import gearman

gm_worker = gearman.GearmanWorker(['localhost:4730'])

def task_listener_reverse(gearman_worker, gearman_job):
    print 'Reversing string:' + gearman_job.data
    return gearman_job.data[::-1]

gm_worker.set_client_id("worker_revers")
gm_worker.register_task("reverse", task_listener_reverse)

gm_worker.work()
可以看到,在worker同样要连接到本地4730端口的server,给了一个job处理函数,反序job传来的数据并返回,register_task函数将名为”reverse“的job和task_listener_reverse函数注册在一起,说明该函数用来处理名为”reverse”的job的,最后调用work函数来工作。来,我们看看效果吧,首先启用client.py文件,此时因为worker还没启动,client在此阻塞住,等待task处理。然后运行worker程序,可以看到client和worker的输出:

分布式任务系统gearman及python实例

分布式任务系统gearman及python实例

3.2 返回结果

worker提供了3个API可以在worker函数中发送job的数据、状态和警告:
  • GearmanWorker.send_job_data(current_job, data, poll_timeout=None): Send a Gearman JOB_DATA update for an inflight job
  • GearmanWorker.send_job_status(current_job, numerator, denominator, poll_timeout=None): Send a Gearman JOB_STATUS update for an inflight job
  • GearmanWorker.send_job_warning(current_job, data, poll_timeout=None): Send a Gearman JOB_WARNING update for an inflight job
下面是来自官网的例子:
gm_worker = gearman.GearmanWorker(['localhost:4730'])

# See gearman/job.py to see attributes on the GearmanJob
# Send back a reversed version of the 'data' string through WORK_DATA instead of WORK_COMPLETE
def task_listener_reverse_inflight(gearman_worker, gearman_job):
    reversed_data = reversed(gearman_job.data)
    total_chars = len(reversed_data)

    for idx, character in enumerate(reversed_data):
        gearman_worker.send_job_data(gearman_job, str(character))
        gearman_worker.send_job_status(gearman_job, idx + 1, total_chars)

    return None

# gm_worker.set_client_id is optional
gm_worker.register_task('reverse', task_listener_reverse_inflight)

# Enter our work loop and call gm_worker.after_poll() after each time we timeout/see socket activity
gm_worker.work()

3.3 数据序列化

同client一样,worker端也只能发送字符类型的数据,如果想要发送python里的结构体,必须用序列化将其转化成字符串。与client一样,worker也有一个encoder,你同样可以在里面定义序列化和反序列化的方法,不过值得注意的是,worker端的序列化和反序列化方法必须对应,否则client和worker端的发送的数据都不能被彼此争取的反序列化。下面演示了使用JSON方法来进行序列化:
import json # Or similarly styled library
class JSONDataEncoder(gearman.DataEncoder):
    @classmethod
    def encode(cls, encodable_object):
        return json.dumps(encodable_object)

    @classmethod
    def decode(cls, decodable_string):
        return json.loads(decodable_string)

class DBRollbackJSONWorker(gearman.GearmanWorker):
    data_encoder = JSONDataEncoder

    def after_poll(self, any_activity):
        # After every select loop, let's rollback our DB connections just to be safe
        continue_working = True
        # self.db_connections.rollback()
        return continue_working

worker端提供了rollback函数,每次轮询完查看socket是否活跃或者timeout时就会调用这个函数:
GearmanWorker.after_poll(any_activity)

Polling callback to notify any outside listeners whats going on with the GearmanWorker.

Return True to continue polling, False to exit the work loop


4 admin_client

前面讲了Client和Worker,对于server也提供了一些API,可以对其进行监控和设置,比如:设置queue大小、关闭连接、查看状态、查看worker等,用于操作的对象时GearmanAdminClient,其定义如下:

class gearman.admin_client.GearmanAdminClient(host_list=None,poll_timeout=10.0)
所提供的API有:
  • GearmanAdminClient.send_maxqueue(task, max_size): Sends a request to change the maximum queue size for a given task
  • GearmanAdminClient.send_shutdown(graceful=True): Sends a request to shutdown the connected gearman server
  • GearmanAdminClient.get_status():Retrieves a list of all registered tasks and reports how many items/workers are in the queue
  • GearmanAdminClient.get_version(): Retrieves the version number of the Gearman server
  • GearmanAdminClient.get_workers():Retrieves a list of workers and reports what tasks they’re operating on
  • GearmanAdminClient.ping_server(): Sends off a debugging string to execute an application ping on the Gearman server, return the response time
gm_admin_client = gearman.GearmanAdminClient(['localhost:4730'])

# Inspect server state
status_response = gm_admin_client.get_status()
version_response = gm_admin_client.get_version()
workers_response = gm_admin_client.get_workers()
response_time = gm_admin_client.ping_server()


5. job对象

5.1 GearmanJob

GearmanJob对象提供了发送到server的job的最基本信息,其定义如下:
class gearman.job.GearmanJob(connection, handle, task, unique, data)


 server信息

当我们得到一个job对象后,想知道与之相连的server信息时,就可以调用如下两个属性:
  • GearmanJob.connection: GearmanConnection - Server assignment. Could be None prior to client job submission
  • GearmanJob.handle:string - Job’s server handle. Handles are NOT interchangeable across different gearman servers

 job参数
  • GearmanJob.task:string - Job’s task
  • GearmanJob.unique:string - Job’s unique identifier (client assigned)
  • GearmanJob.data:binary - Job’s binary payload

5.2  GearmanJobRequest

GearmanJobRequest是job请求的状态跟踪器,代表一个job请求,可用于GearmanClient中,其定义如下:
class  gearman.job. GearmanJobRequest ( gearman_jobinitial_priority=Nonebackground=False, max_attempts=1 )

跟踪job发送

  • GearmanJobRequest.gearman_job:             GearmanJob - Job that is being tracked by this GearmanJobRequest object
  • GearmanJobRequest.priority:                PRIORITY_NONE [default]、PRIORITY_LOW、PRIORITY_HIGH
  • GearmanJobRequest.background:              boolean - Is this job backgrounded?
  • GearmanJobRequest.connection_attempts:     integer - Number of attempted connection attempts
  • GearmanJobRequest.max_connection_attempts: integer - Maximum number of attempted connection attempts before raising an exception

跟踪job执行过程

  • GearmanJobRequest.result:    binary - Job’s returned binary payload - Populated if and only if JOB_COMPLETE
  • GearmanJobRequest.exception:    binary - Job’s exception binary payload
  • GearmanJobRequest.state:     
  • GearmanJobRequest.timed_out:    boolean - Did the client hit its polling_timeout prior to a job finishing?
  • GearmanJobRequest.complete:     boolean - Does the client need to continue to poll for more updates from this job?
其中 GearmanJobRequest.state的返回值可以有:
  • JOB_UNKNOWN - Request state is currently unknown, either unsubmitted or connection failed
  • JOB_PENDING - Request has been submitted, pending handle
  • JOB_CREATED - Request has been accepted
  • JOB_FAILED - Request received an explicit job failure (job done but errored out)
  • JOB_COMPLETE - Request received an explicit job completion (job done with results)

跟踪运行中的job状态

某些特定的GearmanJob在实际完成之前就可能发回数据。GearmanClient用一些队列来保存跟踪这些发回数据的时间和内容等
  • GearmanJobRequest.warning_updates: collections.deque - Job’s warning binary payloads
  • GearmanJobRequest.data_updates:        collections.deque - Job’s data binary payloads
  • GearmanJobRequest.status:                       dictionary - Job’s status
其中,GearmanJobRequest.status返回job的状态是一个字典,内容有:
  • handle - string - Job handle
  • known - boolean - Is the server aware of this request?
  • running - boolean - Is the request currently being processed by a worker?
  • numerator - integer
  • denominator - integer
  • time_received - integer - Time last updated