**链接:****传送门 **
题意:给一个 n ,输出 Fibonacci 数列第 n 项,如果第 n 项的位数 >= 8 位则按照 前4位 + ... + 后4位的格式输出
思路:
n < 40时位数不会超过8位,直接打表输出
-
n >= 40 时,需要解决两个问题
- 后 4 位可以用矩阵快速幂求出,非常简单
- 前 4 位的求法借鉴 此博客!
balabala:真是涨姿势了~~
/*************************************************************************
> File Name: hdu3117.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月04日 星期四 21时14分23秒
************************************************************************/
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2;
const int MOD = 10000;
#define mod(x) ((x)%MOD)
#define ll long long
#define dou double
#define cal(x) ( -0.5*log10(5) + (double)x*log10(((1+sqrt(5))*1.0)/2) )
#define cls(x) memset(x,0,sizeof(x))
struct mat{
int m[maxn][maxn];
}unit;
void init_unit(){
for(int i=0;i<maxn;i++) unit.m[i][i] = 1;
return;
}
mat operator *(mat a,mat b){
mat ret;
cls(ret.m);
ll x;
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
x = 0;
for(int k=0;k<2;k++)
x += mod( (ll)a.m[i][k]*b.m[k][j] );
ret.m[i][j] = mod(x);
}
}
return ret;
}
mat pow_mat(mat a,ll x){
mat ret = unit;
while(x){
if(x&1) ret = ret*a;
a = a*a;
x >>= 1;
}
return ret;
}
mat a,b;
void init_mat(){
cls(a.m);
a.m[0][0] = a.m[0][1] = a.m[1][0] = 1;
cls(b.m);
b.m[0][0] = b.m[1][0] = 1;
}
ll n;
ll fib[40];
void init_fib(){
fib[0] = 0; fib[1] = fib[2] = 1;
for(int i=3;i<40;i++) fib[i] = fib[i-1] + fib[i-2];
}
int main(){
init_unit();
init_fib();
init_mat();
while(cin>>n){
if(n<40) cout<< fib[n] <<endl;
else{
dou t1 = cal(n);
dou tmp = ( t1 - (int)t1 + 3 );
printf("%d...", (int)pow( 10 , tmp ) );
mat ans = pow_mat( a , n-2 );
ans = ans*b;
printf("%04d\n",ans.m[0][0]);
}
}
return 0;
}