hadoop2.7之Mapper/reducer源码分析

时间:2024-10-16 15:35:02

一切从示例程序开始:

示例程序

Hadoop2.7 提供的示例程序WordCount.java

package org.apache.hadoop.examples;

import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class WordCount {
//继承泛型类Mapper
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
//定义hadoop数据类型IntWritable实例one,并且赋值为1
private final static IntWritable one = new IntWritable(1);
//定义hadoop数据类型Text实例word
private Text word = new Text();
//实现map函数
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
//Java的字符串分解类,默认分隔符“空格”、“制表符(‘\t’)”、“换行符(‘\n’)”、“回车符(‘\r’)”
StringTokenizer itr = new StringTokenizer(value.toString());
//循环条件表示返回是否还有分隔符。
while (itr.hasMoreTokens()) {
/*
    nextToken():返回从当前位置到下一个分隔符的字符串
    word.set()Java数据类型与hadoop数据类型转换
    */
word.set(itr.nextToken());
//hadoop全局类context输出函数write;
context.write(word, one);
}
}
} //继承泛型类Reducer
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> { //实例化IntWritable
private IntWritable result = new IntWritable();
//实现reduce
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
//循环values,并记录单词个数
for (IntWritable val : values) {
sum += val.get();
}
//Java数据类型sum,转换为hadoop数据类型result
result.set(sum);
//输出结果到hdfs
context.write(key, result);
}
} public static void main(String[] args) throws Exception {
//实例化Configuration
Configuration conf = new Configuration();
/*
   GenericOptionsParser是hadoop框架中解析命令行参数的基本类。
   getRemainingArgs();返回数组【一组路径】
   */
/*
   函数实现
   public String[] getRemainingArgs() {
return (commandLine == null) ? new String[]{} : commandLine.getArgs();
   }*/
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
//如果只有一个路径,则输出需要有输入路径和输出路径
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
//实例化job
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
/*
   指定CombinerClass类
   这里很多人对CombinerClass不理解
   */
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
//rduce输出Key的类型,是Text
job.setOutputKeyClass(Text.class);
// rduce输出Value的类型
job.setOutputValueClass(IntWritable.class);
//添加输入路径
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
//添加输出路径
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
//提交job
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

1.Mapper

  将输入的键值对映射到一组中间的键值对。

  映射将独立的任务的输入记录转换成中间的记录。装好的中间记录不需要和输入记录保持同一种类型。一个给定的输入对可以映射成0个或者多个输出对。

  Hadoop Map-Reduce框架为每个job产生的输入格式(InputFormat)的InputSplit产生一个映射task。Mapper实现类通过JobConfigurable#configure(JobConf)获取job的JobConf,并初始化自己。类似的,它们使用Closeable#close()方法消耗初始化。

  然后,框架为该任务的InputSplit中的每个键值对调用map(Object, Object, OutputCollector, Reporter)方法。

  所有关联到给定输出的中间值随后由框架分组,并传到Reducer来确定最终的输出。用户可通过指定一个比较器Compator来控制分组,Compator的指定通过JobConf#setOutputKeyComparatorClass(Class)完成。

  分组的Mapper输出每个Reducer一个分区。用户可以通过实现自定义的分区来控制哪些键(和记录)到哪个Reducer。

  用户可以选择指定一个Combiner,通过JobConf#setCombinerClass(Class),来执行本地中间输出的聚合,它可以帮助减少数据从Mapper到Reducer数据转换的数量。

  中间、分组的输出保存在SequeceFile文件中,应用可以指定中间输出是否和怎么样压缩,压缩算法可以通过JobConf来设置CompressionCodec。

  若job没有reducer,Mapper的输出直接写到FileSystem,而不会根据键分组。

示例:

  

     public class MyMapper<K extends WritableComparable, V extends Writable>
extends MapReduceBase implements Mapper<K, V, K, V> { static enum MyCounters { NUM_RECORDS } private String mapTaskId;
private String inputFile;
private int noRecords = 0; public void configure(JobConf job) {
mapTaskId = job.get(JobContext.TASK_ATTEMPT_ID);
inputFile = job.get(JobContext.MAP_INPUT_FILE);
} public void map(K key, V val,
OutputCollector<K, V> output, Reporter reporter)
throws IOException {
// Process the <key, value> pair (assume this takes a while)
// ...
// ... // Let the framework know that we are alive, and kicking!
// reporter.progress(); // Process some more
// ...
// ... // Increment the no. of <key, value> pairs processed
++noRecords; // Increment counters
reporter.incrCounter(NUM_RECORDS, 1); // Every 100 records update application-level status
if ((noRecords%100) == 0) {
reporter.setStatus(mapTaskId + " processed " + noRecords +
" from input-file: " + inputFile);
} // Output the result
output.collect(key, val);
}
}

上述应用自定义一个MapRunnable来对map处理过程进行更多的控制:如多线程Mapper等等。

或者示例:

 public class TokenCounterMapper
extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}

应用可以重新(org.apache.hadoop.mapreduce.Mapper.Context)的run方法来来对映射处理进行更精确的控制,例如多线程的Mapper等等。

Mapper的方法:

  void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter)
throws IOException;

该方法将一个单独的键值对输入映射成一个中间键值对。

输出键值对不需要和输入键值对的类型保持一致,一个给定的数据键值对可以映射到0个或者多个输出键值对。输出键值对可以通过OutputCollector#collect(Object,Object)获得的。

  应用可以使用Reporter提供处理报告或者仅仅是标示它们的存活。在一个应用需要相当多的时间来处理单独的键值对的场景中,Report就非常重要了,因为框架可能认为task已经超期,并杀死那个task。避免这种情况的办法是设置mapreduce.task.timeout到一个足够大的值(或者设置为0表示永远不会超时)。

mapper的层次结构:

hadoop2.7之Mapper/reducer源码分析

2.Reducer

将一组共享一个键的中间值减少到一小组值。

用户通过JobConf#setNumReducerTask(int)方法来设置job的Reducer的数目。Reducer的实现类通过JobConfigurable#configure(JobConf)方法来获取job,并初始化它们。类似的,可通过Closeable#close()方法来消耗初始化。

  Reducer有是3个主要阶段:

第一阶段:洗牌,Reducer的输入是Mapper的分组输出。在这个阶段,每个Reducer通过http获取所有Mapper的相关分区的输出。

第二阶段:排序,在这个阶段,框架根据键(因不同的Mapper可能产生相同的Key)将Reducer进行分组。洗牌和排序阶段是同步发生的,例如:当取出输出时,将合并它们。

  二次排序,若分组中间值等价的键规则和reduce之前键分组的规则不同时,那么其中之一可以通过JobConf#setOutputValueGroupingComparator(Class)来指定一个Comparator。

JobConf#setOutputKeyComparatorClass(Class)可以用来控制中间键分组,可以用在模拟二次排序的值连接中。

示例:若你想找出重复的web网页,并将他们全部标记为“最佳”网址的示例。你可以这样创建job:

  Map输入的键:url

  Map输入的值:document

  Map输出的键:document checksum,url pagerank

  Map输出的值:url

  分区:通过checksum

输出键比较器:通过checksum,然后是pagerank降序。

  输出值分组比较器:通过checksum

Reduce

  在此阶段,为在分组书中的每个<key,value数组>对调用reduce(Object, Iterator, OutputCollector, Reporter)方法。

  reduce task的输出通常写到写到文件系统中,方法是:OutputCollector#collect(Object, Object)。

Reducer的输出结果没有重新排序。

示例:

     public class MyReducer<K extends WritableComparable, V extends Writable>
extends MapReduceBase implements Reducer<K, V, K, V> { static enum MyCounters { NUM_RECORDS } private String reduceTaskId;
private int noKeys = 0; public void configure(JobConf job) {
reduceTaskId = job.get(JobContext.TASK_ATTEMPT_ID);
} public void reduce(K key, Iterator<V> values,
OutputCollector<K, V> output,
Reporter reporter)
throws IOException { // Process
int noValues = 0;
while (values.hasNext()) {
V value = values.next(); // Increment the no. of values for this key
++noValues; // Process the <key, value> pair (assume this takes a while)
// ...
// ... // Let the framework know that we are alive, and kicking!
if ((noValues%10) == 0) {
reporter.progress();
} // Process some more
// ...
// ... // Output the <key, value>
output.collect(key, value);
} // Increment the no. of <key, list of values> pairs processed
++noKeys; // Increment counters
reporter.incrCounter(NUM_RECORDS, 1); // Every 100 keys update application-level status
if ((noKeys%100) == 0) {
reporter.setStatus(reduceTaskId + " processed " + noKeys);
}
}
}

下图来源:http://x-rip.iteye.com/blog/1541914hadoop2.7之Mapper/reducer源码分析

3. Job

  3.1 上述示例程序最关键的一句:job.waitForCompletion(true)

 /**
* Submit the job to the cluster and wait for it to finish.
* @param verbose print the progress to the user
* @return true if the job succeeded
* @throws IOException thrown if the communication with the
* <code>JobTracker</code> is lost
*/
public boolean waitForCompletion(boolean verbose
) throws IOException, InterruptedException,
ClassNotFoundException {
if (state == JobState.DEFINE) {
submit();
}
if (verbose) {
monitorAndPrintJob();
} else {
// get the completion poll interval from the client.
int completionPollIntervalMillis =
Job.getCompletionPollInterval(cluster.getConf());
while (!isComplete()) {
try {
Thread.sleep(completionPollIntervalMillis);
} catch (InterruptedException ie) {
}
}
}
return isSuccessful();
}

  3.2 提交的过程

/**
* Submit the job to the cluster and return immediately.
* @throws IOException
*/
public void submit()
throws IOException, InterruptedException, ClassNotFoundException {
ensureState(JobState.DEFINE);
setUseNewAPI();
connect();
final JobSubmitter submitter =
getJobSubmitter(cluster.getFileSystem(), cluster.getClient());
status = ugi.doAs(new PrivilegedExceptionAction<JobStatus>() {
public JobStatus run() throws IOException, InterruptedException,
ClassNotFoundException {
return submitter.submitJobInternal(Job.this, cluster);
}
});
state = JobState.RUNNING;
LOG.info("The url to track the job: " + getTrackingURL());
}

  连接过程:

  private synchronized void connect()
throws IOException, InterruptedException, ClassNotFoundException {
if (cluster == null) {
cluster =
ugi.doAs(new PrivilegedExceptionAction<Cluster>() {
public Cluster run()
throws IOException, InterruptedException,
ClassNotFoundException {
return new Cluster(getConfiguration());
}
});
}
}

其中,

ugi定义在JobContextImpl.java中:

/**
* The UserGroupInformation object that has a reference to the current user
*/
protected UserGroupInformation ugi;

Cluster类提供了一个访问map/reduce集群的接口:

public static enum JobTrackerStatus {INITIALIZING, RUNNING};

  private ClientProtocolProvider clientProtocolProvider;
private ClientProtocol client;
private UserGroupInformation ugi;
private Configuration conf;
private FileSystem fs = null;
private Path sysDir = null;
private Path stagingAreaDir = null;
private Path jobHistoryDir = null;

  4. JobSubmitter

/**
* Internal method for submitting jobs to the system.
*
* <p>The job submission process involves:
* <ol>
* <li>
* Checking the input and output specifications of the job.
* </li>
* <li>
* Computing the {@link InputSplit}s for the job.
* </li>
* <li>
* Setup the requisite accounting information for the
* {@link DistributedCache} of the job, if necessary.
* </li>
* <li>
* Copying the job's jar and configuration to the map-reduce system
* directory on the distributed file-system.
* </li>
* <li>
* Submitting the job to the <code>JobTracker</code> and optionally
* monitoring it's status.
* </li>
* </ol></p>
* @param job the configuration to submit
* @param cluster the handle to the Cluster
* @throws ClassNotFoundException
* @throws InterruptedException
* @throws IOException
*/
JobStatus submitJobInternal(Job job, Cluster cluster)
throws ClassNotFoundException, InterruptedException, IOException { //validate the jobs output specs
checkSpecs(job); Configuration conf = job.getConfiguration();
addMRFrameworkToDistributedCache(conf); Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);
//configure the command line options correctly on the submitting dfs
InetAddress ip = InetAddress.getLocalHost();
if (ip != null) {
submitHostAddress = ip.getHostAddress();
submitHostName = ip.getHostName();
conf.set(MRJobConfig.JOB_SUBMITHOST,submitHostName);
conf.set(MRJobConfig.JOB_SUBMITHOSTADDR,submitHostAddress);
}
JobID jobId = submitClient.getNewJobID();
job.setJobID(jobId);
Path submitJobDir = new Path(jobStagingArea, jobId.toString());
JobStatus status = null;
try {
conf.set(MRJobConfig.USER_NAME,
UserGroupInformation.getCurrentUser().getShortUserName());
conf.set("hadoop.http.filter.initializers",
"org.apache.hadoop.yarn.server.webproxy.amfilter.AmFilterInitializer");
conf.set(MRJobConfig.MAPREDUCE_JOB_DIR, submitJobDir.toString());
LOG.debug("Configuring job " + jobId + " with " + submitJobDir
+ " as the submit dir");
// get delegation token for the dir
TokenCache.obtainTokensForNamenodes(job.getCredentials(),
new Path[] { submitJobDir }, conf); populateTokenCache(conf, job.getCredentials()); // generate a secret to authenticate shuffle transfers
if (TokenCache.getShuffleSecretKey(job.getCredentials()) == null) {
KeyGenerator keyGen;
try { int keyLen = CryptoUtils.isShuffleEncrypted(conf)
? conf.getInt(MRJobConfig.MR_ENCRYPTED_INTERMEDIATE_DATA_KEY_SIZE_BITS,
MRJobConfig.DEFAULT_MR_ENCRYPTED_INTERMEDIATE_DATA_KEY_SIZE_BITS)
: SHUFFLE_KEY_LENGTH;
keyGen = KeyGenerator.getInstance(SHUFFLE_KEYGEN_ALGORITHM);
keyGen.init(keyLen);
} catch (NoSuchAlgorithmException e) {
throw new IOException("Error generating shuffle secret key", e);
}
SecretKey shuffleKey = keyGen.generateKey();
TokenCache.setShuffleSecretKey(shuffleKey.getEncoded(),
job.getCredentials());
} copyAndConfigureFiles(job, submitJobDir); Path submitJobFile = JobSubmissionFiles.getJobConfPath(submitJobDir); // Create the splits for the job
LOG.debug("Creating splits at " + jtFs.makeQualified(submitJobDir));
int maps = writeSplits(job, submitJobDir);
conf.setInt(MRJobConfig.NUM_MAPS, maps);
LOG.info("number of splits:" + maps); // write "queue admins of the queue to which job is being submitted"
// to job file.
String queue = conf.get(MRJobConfig.QUEUE_NAME,
JobConf.DEFAULT_QUEUE_NAME);
AccessControlList acl = submitClient.getQueueAdmins(queue);
conf.set(toFullPropertyName(queue,
QueueACL.ADMINISTER_JOBS.getAclName()), acl.getAclString()); // removing jobtoken referrals before copying the jobconf to HDFS
// as the tasks don't need this setting, actually they may break
// because of it if present as the referral will point to a
// different job.
TokenCache.cleanUpTokenReferral(conf); if (conf.getBoolean(
MRJobConfig.JOB_TOKEN_TRACKING_IDS_ENABLED,
MRJobConfig.DEFAULT_JOB_TOKEN_TRACKING_IDS_ENABLED)) {
// Add HDFS tracking ids
ArrayList<String> trackingIds = new ArrayList<String>();
for (Token<? extends TokenIdentifier> t :
job.getCredentials().getAllTokens()) {
trackingIds.add(t.decodeIdentifier().getTrackingId());
}
conf.setStrings(MRJobConfig.JOB_TOKEN_TRACKING_IDS,
trackingIds.toArray(new String[trackingIds.size()]));
} // Set reservation info if it exists
ReservationId reservationId = job.getReservationId();
if (reservationId != null) {
conf.set(MRJobConfig.RESERVATION_ID, reservationId.toString());
} // Write job file to submit dir
writeConf(conf, submitJobFile); //
// Now, actually submit the job (using the submit name)
//
printTokens(jobId, job.getCredentials());
status = submitClient.submitJob(
jobId, submitJobDir.toString(), job.getCredentials());
if (status != null) {
return status;
} else {
throw new IOException("Could not launch job");
}
} finally {
if (status == null) {
LOG.info("Cleaning up the staging area " + submitJobDir);
if (jtFs != null && submitJobDir != null)
jtFs.delete(submitJobDir, true); }
}
}

上面所说,job的提交有如下过程:

1. 检查job的输入/输出规范

2. 计算job的InputSplit

3. 如需要,计算job的DistributedCache所需要的前置计算信息

4. 复制job的jar和配置文件到分布式文件系统的map-reduce系统目录

5. 提交job到JobTracker,还可以监视job的执行状态。

若当前JobClient (0.22 hadoop) 运行在YARN.则job提交任务运行在YARNRunner

Hadoop Yarn 框架原理及运作机制

hadoop2.7之Mapper/reducer源码分析

主要步骤

  • 作业提交
  • 作业初始化
  • 资源申请与任务分配
  • 任务执行

具体步骤

在运行作业之前,Resource Manager和Node Manager都已经启动,所以在上图中,Resource Manager进程和Node Manager进程不需要启动

  • 1. 客户端进程通过runJob(实际中一般使用waitForCompletion提交作业)在客户端提交Map Reduce作业(在Yarn中,作业一般称为Application应用程序)
  • 2. 客户端向Resource Manager申请应用程序ID(application id),作为本次作业的唯一标识
  • 3. 客户端程序将作业相关的文件(通常是指作业本身的jar包以及这个jar包依赖的第三方的jar),保存到HDFS上。也就是说Yarn based MR通过HDFS共享程序的jar包,供Task进程读取
  • 4. 客户端通过runJob向ResourceManager提交应用程序
  • 5.a/5.b. Resource Manager收到来自客户端的提交作业请求后,将请求转发给作业调度组件(Scheduler),Scheduler分配一个Container,然后Resource Manager在这个Container中启动Application Master进程,并交由Node Manager对Application Master进程进行管理
  • 6. Application Master初始化作业(应用程序),初始化动作包括创建监听对象以监听作业的执行情况,包括监听任务汇报的任务执行进度以及是否完成(不同的计算框架为集成到YARN资源调度框架中,都要提供不同的ApplicationMaster,比如Spark、Storm框架为了运行在Yarn之上,它们都提供了ApplicationMaster)
  • 7. Application Master根据作业代码中指定的数据地址(数据源一般来自HDFS)进行数据分片,以确定Mapper任务数,具体每个Mapper任务发往哪个计算节点,Hadoop会考虑数据本地性,本地数据本地性、本机架数据本地性以及最后跨机架数据本地性)。同时还会计算Reduce任务数,Reduce任务数是在程序代码中指定的,通过job.setNumReduceTask显式指定的
  • 8.如下几点是Application Master向Resource Manager申请资源的细节
  • 8.1 Application Master根据数据分片确定的Mapper任务数以及Reducer任务数向Resource Manager申请计算资源(计算资源主要指的是内存和CPU,在Hadoop Yarn中,使用Container这个概念来描述计算单位,即计算资源是以Container为单位的,一个Container包含一定数量的内存和CPU内核数)。
  • 8.2 Application Master是通过向Resource Manager发送Heart Beat心跳包进行资源申请的,申请时,请求中还会携带任务的数据本地性等信息,使得Resource Manager在分配资源时,不同的Task能够分配到的计算资源尽可能满足数据本地性
  • 8.3 Application Master向Resource Manager资源申请时,还会携带内存数量信息,默认情况下,Map任务和Reduce任务都会分陪1G内存,这个值是可以通过参数mapreduce.map.memory.mb and mapreduce.reduce.memory.mb进行修改。

  5. YARNRunner

 @Override
public JobStatus submitJob(JobID jobId, String jobSubmitDir, Credentials ts)
throws IOException, InterruptedException { addHistoryToken(ts); // Construct necessary information to start the MR AM
ApplicationSubmissionContext appContext =
createApplicationSubmissionContext(conf, jobSubmitDir, ts); // Submit to ResourceManager
try {
ApplicationId applicationId =
resMgrDelegate.submitApplication(appContext); ApplicationReport appMaster = resMgrDelegate
.getApplicationReport(applicationId);
String diagnostics =
(appMaster == null ?
"application report is null" : appMaster.getDiagnostics());
if (appMaster == null
|| appMaster.getYarnApplicationState() == YarnApplicationState.FAILED
|| appMaster.getYarnApplicationState() == YarnApplicationState.KILLED) {
throw new IOException("Failed to run job : " +
diagnostics);
}
return clientCache.getClient(jobId).getJobStatus(jobId);
} catch (YarnException e) {
throw new IOException(e);
}
}

 调用YarnClient的submitApplication()方法,其实现如下: 

  6. YarnClientImpl

@Override
public ApplicationId
submitApplication(ApplicationSubmissionContext appContext)
throws YarnException, IOException {
ApplicationId applicationId = appContext.getApplicationId();
if (applicationId == null) {
throw new ApplicationIdNotProvidedException(
"ApplicationId is not provided in ApplicationSubmissionContext");
}
SubmitApplicationRequest request =
Records.newRecord(SubmitApplicationRequest.class);
request.setApplicationSubmissionContext(appContext); // Automatically add the timeline DT into the CLC
// Only when the security and the timeline service are both enabled
if (isSecurityEnabled() && timelineServiceEnabled) {
addTimelineDelegationToken(appContext.getAMContainerSpec());
} //TODO: YARN-1763:Handle RM failovers during the submitApplication call.
rmClient.submitApplication(request); int pollCount = 0;
long startTime = System.currentTimeMillis();
EnumSet<YarnApplicationState> waitingStates =
EnumSet.of(YarnApplicationState.NEW,
YarnApplicationState.NEW_SAVING,
YarnApplicationState.SUBMITTED);
EnumSet<YarnApplicationState> failToSubmitStates =
EnumSet.of(YarnApplicationState.FAILED,
YarnApplicationState.KILLED);
while (true) {
try {
ApplicationReport appReport = getApplicationReport(applicationId);
YarnApplicationState state = appReport.getYarnApplicationState();
if (!waitingStates.contains(state)) {
if(failToSubmitStates.contains(state)) {
throw new YarnException("Failed to submit " + applicationId +
" to YARN : " + appReport.getDiagnostics());
}
LOG.info("Submitted application " + applicationId);
break;
} long elapsedMillis = System.currentTimeMillis() - startTime;
if (enforceAsyncAPITimeout() &&
elapsedMillis >= asyncApiPollTimeoutMillis) {
throw new YarnException("Timed out while waiting for application " +
applicationId + " to be submitted successfully");
} // Notify the client through the log every 10 poll, in case the client
// is blocked here too long.
if (++pollCount % 10 == 0) {
LOG.info("Application submission is not finished, " +
"submitted application " + applicationId +
" is still in " + state);
}
try {
Thread.sleep(submitPollIntervalMillis);
} catch (InterruptedException ie) {
LOG.error("Interrupted while waiting for application "
+ applicationId
+ " to be successfully submitted.");
}
} catch (ApplicationNotFoundException ex) {
// FailOver or RM restart happens before RMStateStore saves
// ApplicationState
LOG.info("Re-submit application " + applicationId + "with the " +
"same ApplicationSubmissionContext");
rmClient.submitApplication(request);
}
} return applicationId;
}

  7. ClientRMService

ClientRMService是resource manager的客户端接口。这个模块处理从客户端到resource mananger的rpc接口。

 @Override
public SubmitApplicationResponse submitApplication(
SubmitApplicationRequest request) throws YarnException {
ApplicationSubmissionContext submissionContext = request
.getApplicationSubmissionContext();
ApplicationId applicationId = submissionContext.getApplicationId(); // ApplicationSubmissionContext needs to be validated for safety - only
// those fields that are independent of the RM's configuration will be
// checked here, those that are dependent on RM configuration are validated
// in RMAppManager. String user = null;
try {
// Safety
user = UserGroupInformation.getCurrentUser().getShortUserName();
} catch (IOException ie) {
LOG.warn("Unable to get the current user.", ie);
RMAuditLogger.logFailure(user, AuditConstants.SUBMIT_APP_REQUEST,
ie.getMessage(), "ClientRMService",
"Exception in submitting application", applicationId);
throw RPCUtil.getRemoteException(ie);
} // Check whether app has already been put into rmContext,
// If it is, simply return the response
if (rmContext.getRMApps().get(applicationId) != null) {
LOG.info("This is an earlier submitted application: " + applicationId);
return SubmitApplicationResponse.newInstance();
} if (submissionContext.getQueue() == null) {
submissionContext.setQueue(YarnConfiguration.DEFAULT_QUEUE_NAME);
}
if (submissionContext.getApplicationName() == null) {
submissionContext.setApplicationName(
YarnConfiguration.DEFAULT_APPLICATION_NAME);
}
if (submissionContext.getApplicationType() == null) {
submissionContext
.setApplicationType(YarnConfiguration.DEFAULT_APPLICATION_TYPE);
} else {
if (submissionContext.getApplicationType().length() > YarnConfiguration.APPLICATION_TYPE_LENGTH) {
submissionContext.setApplicationType(submissionContext
.getApplicationType().substring(0,
YarnConfiguration.APPLICATION_TYPE_LENGTH));
}
} try {
// call RMAppManager to submit application directly
rmAppManager.submitApplication(submissionContext,
System.currentTimeMillis(), user); LOG.info("Application with id " + applicationId.getId() +
" submitted by user " + user);
RMAuditLogger.logSuccess(user, AuditConstants.SUBMIT_APP_REQUEST,
"ClientRMService", applicationId);
} catch (YarnException e) {
LOG.info("Exception in submitting application with id " +
applicationId.getId(), e);
RMAuditLogger.logFailure(user, AuditConstants.SUBMIT_APP_REQUEST,
e.getMessage(), "ClientRMService",
"Exception in submitting application", applicationId);
throw e;
} SubmitApplicationResponse response = recordFactory
.newRecordInstance(SubmitApplicationResponse.class);
return response;
}

调用RMAppManager来直接提交application

 @SuppressWarnings("unchecked")
protected void submitApplication(
ApplicationSubmissionContext submissionContext, long submitTime,
String user) throws YarnException {
ApplicationId applicationId = submissionContext.getApplicationId(); RMAppImpl application =
createAndPopulateNewRMApp(submissionContext, submitTime, user);
ApplicationId appId = submissionContext.getApplicationId(); if (UserGroupInformation.isSecurityEnabled()) {
try {
this.rmContext.getDelegationTokenRenewer().addApplicationAsync(appId,
parseCredentials(submissionContext),
submissionContext.getCancelTokensWhenComplete(),
application.getUser());
} catch (Exception e) {
LOG.warn("Unable to parse credentials.", e);
// Sending APP_REJECTED is fine, since we assume that the
// RMApp is in NEW state and thus we haven't yet informed the
// scheduler about the existence of the application
assert application.getState() == RMAppState.NEW;
this.rmContext.getDispatcher().getEventHandler()
.handle(new RMAppRejectedEvent(applicationId, e.getMessage()));
throw RPCUtil.getRemoteException(e);
}
} else {
// Dispatcher is not yet started at this time, so these START events
// enqueued should be guaranteed to be first processed when dispatcher
// gets started.
this.rmContext.getDispatcher().getEventHandler()
.handle(new RMAppEvent(applicationId, RMAppEventType.START));
}
}

  8.RMAppManager

 @SuppressWarnings("unchecked")
protected void submitApplication(
ApplicationSubmissionContext submissionContext, long submitTime,
String user) throws YarnException {
ApplicationId applicationId = submissionContext.getApplicationId(); RMAppImpl application =
createAndPopulateNewRMApp(submissionContext, submitTime, user);
ApplicationId appId = submissionContext.getApplicationId(); if (UserGroupInformation.isSecurityEnabled()) {
try {
this.rmContext.getDelegationTokenRenewer().addApplicationAsync(appId,
parseCredentials(submissionContext),
submissionContext.getCancelTokensWhenComplete(),
application.getUser());
} catch (Exception e) {
LOG.warn("Unable to parse credentials.", e);
// Sending APP_REJECTED is fine, since we assume that the
// RMApp is in NEW state and thus we haven't yet informed the
// scheduler about the existence of the application
assert application.getState() == RMAppState.NEW;
this.rmContext.getDispatcher().getEventHandler()
.handle(new RMAppRejectedEvent(applicationId, e.getMessage()));
throw RPCUtil.getRemoteException(e);
}
} else {
// Dispatcher is not yet started at this time, so these START events
// enqueued should be guaranteed to be first processed when dispatcher
// gets started.
this.rmContext.getDispatcher().getEventHandler()
.handle(new RMAppEvent(applicationId, RMAppEventType.START));
}
}

  9. 异步增加Application--DelegationTokenRenewer

  /**
* Asynchronously add application tokens for renewal.
* @param applicationId added application
* @param ts tokens
* @param shouldCancelAtEnd true if tokens should be canceled when the app is
* done else false.
* @param user user
*/
public void addApplicationAsync(ApplicationId applicationId, Credentials ts,
boolean shouldCancelAtEnd, String user) {
processDelegationTokenRenewerEvent(new DelegationTokenRenewerAppSubmitEvent(
applicationId, ts, shouldCancelAtEnd, user));
}

  调用如下:

  private void processDelegationTokenRenewerEvent(
DelegationTokenRenewerEvent evt) {
serviceStateLock.readLock().lock();
try {
if (isServiceStarted) {
renewerService.execute(new DelegationTokenRenewerRunnable(evt));
} else {
pendingEventQueue.add(evt);
}
} finally {
serviceStateLock.readLock().unlock();
}
}

从上面可以看到,通过锁形式来让线程池来处理事件或者放入到事件队列中中。

新启一个线程:

 @Override
public void run() {
if (evt instanceof DelegationTokenRenewerAppSubmitEvent) {
DelegationTokenRenewerAppSubmitEvent appSubmitEvt =
(DelegationTokenRenewerAppSubmitEvent) evt;
handleDTRenewerAppSubmitEvent(appSubmitEvt);
} else if (evt.getType().equals(
DelegationTokenRenewerEventType.FINISH_APPLICATION)) {
DelegationTokenRenewer.this.handleAppFinishEvent(evt);
}
}
 @SuppressWarnings("unchecked")
private void handleDTRenewerAppSubmitEvent(
DelegationTokenRenewerAppSubmitEvent event) {
/*
* For applications submitted with delegation tokens we are not submitting
* the application to scheduler from RMAppManager. Instead we are doing
* it from here. The primary goal is to make token renewal as a part of
* application submission asynchronous so that client thread is not
* blocked during app submission.
*/
try {
// Setup tokens for renewal
DelegationTokenRenewer.this.handleAppSubmitEvent(event);
rmContext.getDispatcher().getEventHandler()
.handle(new RMAppEvent(event.getApplicationId(), RMAppEventType.START));
} catch (Throwable t) {
LOG.warn(
"Unable to add the application to the delegation token renewer.",
t);
// Sending APP_REJECTED is fine, since we assume that the
// RMApp is in NEW state and thus we havne't yet informed the
// Scheduler about the existence of the application
rmContext.getDispatcher().getEventHandler().handle(
new RMAppRejectedEvent(event.getApplicationId(), t.getMessage()));
}
}
}
private void handleAppSubmitEvent(DelegationTokenRenewerAppSubmitEvent evt)
throws IOException, InterruptedException {
ApplicationId applicationId = evt.getApplicationId();
Credentials ts = evt.getCredentials();
boolean shouldCancelAtEnd = evt.shouldCancelAtEnd();
if (ts == null) {
return; // nothing to add
} if (LOG.isDebugEnabled()) {
LOG.debug("Registering tokens for renewal for:" +
" appId = " + applicationId);
} Collection<Token<?>> tokens = ts.getAllTokens();
long now = System.currentTimeMillis(); // find tokens for renewal, but don't add timers until we know
// all renewable tokens are valid
// At RM restart it is safe to assume that all the previously added tokens
// are valid
appTokens.put(applicationId,
Collections.synchronizedSet(new HashSet<DelegationTokenToRenew>()));
Set<DelegationTokenToRenew> tokenList = new HashSet<DelegationTokenToRenew>();
boolean hasHdfsToken = false;
for (Token<?> token : tokens) {
if (token.isManaged()) {
if (token.getKind().equals(new Text("HDFS_DELEGATION_TOKEN"))) {
LOG.info(applicationId + " found existing hdfs token " + token);
hasHdfsToken = true;
} DelegationTokenToRenew dttr = allTokens.get(token);
if (dttr == null) {
dttr = new DelegationTokenToRenew(Arrays.asList(applicationId), token,
getConfig(), now, shouldCancelAtEnd, evt.getUser());
try {
renewToken(dttr);
} catch (IOException ioe) {
throw new IOException("Failed to renew token: " + dttr.token, ioe);
}
}
tokenList.add(dttr);
}
} if (!tokenList.isEmpty()) {
// Renewing token and adding it to timer calls are separated purposefully
// If user provides incorrect token then it should not be added for
// renewal.
for (DelegationTokenToRenew dtr : tokenList) {
DelegationTokenToRenew currentDtr =
allTokens.putIfAbsent(dtr.token, dtr);
if (currentDtr != null) {
// another job beat us
currentDtr.referringAppIds.add(applicationId);
appTokens.get(applicationId).add(currentDtr);
} else {
appTokens.get(applicationId).add(dtr);
setTimerForTokenRenewal(dtr);
}
}
} if (!hasHdfsToken) {
requestNewHdfsDelegationToken(Arrays.asList(applicationId), evt.getUser(),
shouldCancelAtEnd);
}
}

RM:resourceManager
AM:applicationMaster
NM:nodeManager
简单的说,yarn涉及到3个通信协议:
ApplicationClientProtocol:client通过该协议与RM通信,以后会简称其为CR协议
ApplicationMasterProtocol:AM通过该协议与RM通信,以后会简称其为AR协议
ContainerManagementProtocol:AM通过该协议与NM通信,以后会简称其为AN协议
---------------------------------------------------------------------------------------------------------------------
通常而言,客户端向RM提交一个程序,流程是这样滴:
step1:创建一个CR协议的客户端
rmClient=(ApplicationClientProtocol)rpc.getProxy(ApplicationClientProtocol,rmAddress,conf)

step2:客户端通过CR协议#getNewApplication从RM获取唯一的应用程序ID,简化过的代码:
//GetNewApplicationRequest包含两项信息:ApplicationId 和 最大可申请的资源量
//Records.newRecord(...)是一个静态方法,通过序列化框架生成一些RPC过程需要的对象(yarn默认采用ProtocolBuffers(序列化框架,google ProtocolBuffers这些东东,麻烦大家google下呀,喵))
GetNewApplicationRequest request=Records.newRecord(GetNewApplicationRequest.class);

继续看代码(代码都是简化过的,亲们原谅):
GetNewApplicationResponse newApp =rmClient.getNewApplication(request);
ApplicationId appId = newApp.getApplicationId();

step3:客户端通过CR协议#submitApplication将AM提交到RM上,简化过的代码:
// 客户端将启动AM需要的所有信息打包到ApplicationSubmissionContext 中
ApplicationSubmissionContext  context = Records.newRecord(ApplicationSubmissionContext.class);

。。。。//设置应用程序名称,优先级,队列名称云云
context.setApplicationName(appName);
//构造一个AM启动上下文对象 
ContainerLaunchContext amContainer = Records.newRecord(ContainerLaunchContext .class)
。。。//设置AM相关的变量
amContainer.setLocalResource(localResponse);//设置AM启动所需要的本地资源
amContainer.setEnvironment(env);
context.setAMContainerSpec(amContainer);
context.setApplicationId(appId);
SubmitApplicationRequest request = Records.newRecord(SubmitApplicationRequest.class); 
request.setApplicationSubmissionContext(request);
rmClien.submitApplication(request);//将应用程序提交到RM上 
--------------------------------------------------------------------------------------------------------------------------------------------------
通常而言,AM向RM注册自己,申请资源,请求NM启动Container的流程是这样滴:
AM-RM流程:
step1:创建一个AR协议的客户端
ApplicationMasterProtocol  rmClient = (ApplicationMasterProtocol)rpc.getProxy(ApplicationMasterProtocol.class,rmAddress,conf);
step2:AM向RM注册自己
//这里的 recordFactory.newRecordInstance(。。。)与上面的Records.newRecord(。。。)作用一样,都属于静态调用
RegisterApplicationMasterRequest  request =recordFactory.newRecordInstance(RegisterApplicationMasterRequest.class);

request.setHost(host);
request.setRpcPort(port);
request.setTrackingUrl(appTrackingUrl) 
RegisterApplicationMasterResponse response = rmClient.registerApplicationMaster(request);//完成注册
step3:AM向RM请求资源
一段简化的代码如下(感兴趣的朋友,还请亲自阅读源码):
synchronized(this){
askList =new ArrayList<ResourceRequest>(ask);
releaseList = new ArrayList<ContainerId>(release);
allocateRequest = BuilderUtils.newAllocateRequest(....);构造一个 allocateRequest 对象

//向RM申请资源,同时领取新分配的资源(CPU,内存等)
allocateResponse = rmClient.allocate(allocateRequest ) ;
//根据RM的应答信息设计接下来的逻辑(资源分配)
..... 
step4:AM告诉RM应用程序执行完毕,并退出
//构造请求对象
FinishApplicationMasterRequest  request = recordFactory.newRecordInstance(FinishApplicationMasterRequest.class );
request.setFinishApplicationStatus(appStatus);
..//设置诊断信息
..//设置trackingUrl
//通知RM自己退出
rmclient.finishApplicationMaster(request); 
--------------------------------------------------------------------------------------------------------------------------------------------
AM-NM流程 :
step1:构造AN协议客户端,并启动Container
String cmIpPortStr = container.getNodeId().getHost()+":"+container.getNodeId().getPort();
InetSocketAddress   cmAddress=NetUtils.createSocketAddr(cmIpPortStr);
anClient = (ContainerManagementProtocol)rpc.getProxy(ContainerManagementProtocol.class,cmAddress,conf)
ContainerLaunchContext  ctx=Records.newRecord(ContainerLaunchContext.class);
。。。//设置ctx变量
StartContainerRequest request = Records.newRecord(StartContainerRequest.class);
request.setContainerLaunchContext(ctx);  
request.setContainer(container); 
anClient.startContainer(request);
Step2:为了实时掌握各个Container运行状态,AM可通过AN协议#getContainerStatus向NodeManager询问Container运行状态 
Step3:一旦一个Container运行完成后,AM可通过AN协议#stopContainer释放Container 
===============================================================================================

参考文献:

【1】http://www.aboutyun.com/thread-14277-1-1.html

【2】http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/

【3】http://www.bigdatas.cn/thread-59001-1-1.html

【4】http://bit1129.iteye.com/blog/2186238

【5】http://x-rip.iteye.com/blog/1541914